Noticias para apartado News

Biotechnology business

AWSENSORS RAISED 1M€ INVESTMENT

July 27th 2017

Swedish and Spanish companies invested in AWSensors seeing a growth opportunity.

AWSensors raised 1M€ investment round to strengthen its position in scientific market and enter the healthcare tech market, one of the most competitive markets. The company though has convinced Swedish and Spanish investors that the potential payoff is worth the risk.

Firms entering into the investment round were BAble Capital, a venture capital firm that aims to invest in technology-based companies from Spanish universities and research centers, and Tech Transfer UPV, a venture capital firm created specifically to transfer technology developed at the Spanish university, Polytechnic University of Valencia. But also a consortium of Swedish companies invested in AWSensors seeing a growth opportunity. Other Spanish companies like PolymerChar, Keodes or Citrosol are also among the shareholders.

Prof. Arnau, founder of AWSensors

AWSensors, led by Prof. Antonio Arnau, expects to speed up innovation processes to launch new scientific equipments to meet demand from scientists and industry R&D but also to develop cutting-edge healthcare technology to be applied in personalized medicine.

The aim of these new developments is to get a blood test meant to catch cancer when it’s most treatable, before patients show symptoms, by detecting fragments of DNA shed by tumors.  A new liquid biopsy system will allow for detection of this circulating DNA and its mutations and will be an essential equipment to help doctors diagnose, monitor and treat cancer patients in a personalized way.

To hit that goal, AWSensors got another 1M€ from European Comission through two H2020 European projects:

  • LiqBiopSens project, that is coordinated by AWSensors and developed together with companies and institutions from Spain, Belgium, UK and Greece.
  • Catch-u-DNA project, which is carried out with partners from Germany, France, Israel, Greece and Spain.

These projects as a whole were funded with 5.7M€ by European Comission.


AWSENSORS CONSIGUE UNA INVERSIÓN DE 1 MILLÓN DE EUROS

Nuevos inversores de Suecia y España entran en el accionariado de la compañía

AWSensors ha conseguido despertar el interés de inversores nacionales e internacionales y realizar una ronda de 1 millón de euros. En la operación de inversión han participado BeAble Capital, sociedad gestora que tiene como objetivo invertir en empresas de base tecnológica con origen en universidades y centros de investigación españoles, y Tech Transfer UPV, fondo creado específicamente para trasladar al mercado tecnología desarrollada en la Universidad Politécnica de Valencia. Pero también un consorcio de empresas tecnológicas suecas ha apostado fuerte por entrar como inversor en AWSensors. Además, empresas valencianas como PolymerChar, Keodes o Citrosol están también entre los accionistas.

Esta inversión permitirá a AWSensors consolidarse en el mercado científico internacional donde comercializa una nueva tecnología patentada de sensores para análisis de interacciones moleculares en tiempo real que utilizan investigadores de Europa, Estados Unidos y Asia en los campos de ciencias de la vida y nuevos materiales.

La compañía, liderada por el Prof. Antonio Arnau, espera invertir en nueva infraestructura de fabricación y captar nuevo talento para su plantilla. El objetivo es acelerar el proceso de innovación para sacar al mercado nuevos equipos con mayor productividad y automatización e iniciar nuevos desarrollos para el mercado de salud, ya que la tecnología de AWSensors podrá ser aplicada en medicina personalizada.

Uno de los desarrollos previstos para el mercado sanitario es un equipo para la detección precoz de cáncer colorrectal y su monitorización sin necesidad de entrar al quirófano para realizar una biopsia del tumor. Servirá con un análisis de sangre cuyos resultados se podrían obtener en una hora. La detección en este caso se basa en el ADN que libera el tumor en el organismo. El nuevo sistema permitirá detectar ese ADN circulante y las mutaciones que sufre asociadas al cáncer. Este análisis, denominado biopsia líquida, permitirá un control sencillo del paciente y facilitará por tanto la adaptación del tratamiento de forma personalizada.

Liqbiopsens project

Este nuevo equipo se está desarrollando junto a otras empresas e instituciones de España, Bélgica, Reino Unido y Grecia dentro del proyecto LiqBiopSens financiado por la Comisión Europea dentro del programa H2020. Un proyecto que ha inyectado medio millón de euros a AWSensors.

Paralelamente a este desarrollo, AWSensors participa en otro proyecto europeo, Catch-u-DNA que investiga una nueva técnica para mejorar la sensibilidad de la tecnología en la detección del ADN circulante. Este proyecto, que se realiza con socios de Alemania, Francia, Israel, Grecia y España, ha supuesto el ingreso de medio millón de euros más en la compañía.

En total, la Comisión Europea ha dotado con 5’7 millones de euros a estos dos proyectos de investigación cuyos resultados impulsarán el crecimiento de AWSensor

Catch-u-DNA project towards a new technology for molecular diagnosis

New project to validate an easier and faster technique of molecular diagnosis applied to cancer by using quartz sensors

July 7th 2017

In 2015 AWSensors already got the European project “LiqBiopSens” to develop a liquid biopsy platform for early detection and monitoring of colorectal cancer. Now, the company will work in the European  project “CATCH-U-DNA”, worth 3.4 million euros. CATCH-U-DNA poses a new concept in biophysics and molecular diagnosis based on acoustic sensing of DNA in serum. It aims to provide a novel technology for the ultrasensitive detection of circulating-tumor DNA in serum without PCR amplification.

“CATCH-U-DNA” project was granted under the Horizon 2020 FET-OPEN call, aimed at financing radically new initiatives that can have a long-term economic and social impact. Only the most cutting-edge technology projects are chosen. It is one of the most competitive European programs, where less than 4 per cent of the ideas presented are funded. The project is coordinated by Prof. Electra Gizeli, leader of the Biosensors group in the Institute of Molecular Biology and Biotechnology of the Greek Foundation for Research and Technology-Hellas (FORTH).

Detection of lung and colorectal cancer

The ultimate goal of “CATCH-U-DNA” is to validate a new, simpler and cheaper technology for the detection of genetic markers so that personalized medical diagnosis can be performed in a more precise, easy and affordable way than current technologies.

The project faces the ambitious challenge of testing that radically new technology in the early diagnosis of cancer by detecting the most common genetic mutations that cause colorectal cancer and lung cancer. In fact, it includes not only experimental research but also clinical trials.

In the future, it will be possible to incorporate this new technique into portable equipment and will therefore allow on-site analysis applied to personalized medicine in developed countries or in areas without laboratory infrastructure such as underdeveloped countries.

New technique easier, more affordable and more precise

The amount of mutated DNA in a sample is generally very low, which greatly hampers its detection and characterization. Most of the current methods of detection are based on the technique known as PCR (polymerase chain reaction), which allows amplifying a fragment of DNA by obtaining millions of copies, thus, its detection in the lab is feasible. However, this technique involves a complex and expensive procedure prior to detection. In addition, it may cause a deviation if the amplification is not developed properly.

The “CATCH-U-DNA” technology promises to overcome these limitations and allow for the genetic analysis of human samples in an easier, more affordable and more precise way. The aim is to manufacture an ultra-sensitive device capable of detecting DNA in human samples without any previous amplification procedure even though the amount of that DNA is minimal. Specifically, the goal is the detection of circulating DNA, fragments from the tumor cells found in the blood.

The new technique will use high frequency quartz crystal sensor arrays that allow for a real-time, label-free monitoring, in combination with a revolutionary DNA identification system based on the hydrodynamic molecular properties. This approach will allow to push the detection limit down obviating the amplification.

7 companies and organizations from 5 different countries

The “CATCH-U-DNA” project will be developed over 3 years. Experts in molecular biology, physics, chemistry, nanomaterials, biosensors and microfluidics from Spain, Germany, France, Greece and Israel are involved. They are from the Greek Foundation for Research and Technology Hellas (FORTH), which is the project coordinator, and from AWSensors; the Autonomous University of Madrid, in Spain; the University of Crete in Greece; the Curie Institute in France; the Ben Gurion University of Negev in Israel and the German company Jobst Technologies.

 

honey

AWSensors technology to develop a DNA biosensor for detection of honey adulteration

May 15th 2017

AWSensors technology will be used in a new research project funded by Spanish Government (Retos Investigación 2017-2019) to develop a DNA biosensor for detection of honey adulteration. Honey companies are interested in this biosensor because new and cheaper analytical methods are required to meet the quality controls set by European Comission.

One of the priority challenges of the European Union (EU) is “Quality and Security in Food”. Food adulteration is a topic of interest in several fields: health care, legal (since it is a fraud) and economic (since it generates unfair competition). In this context, honey is one of the most commonly adulterated food, which generates a great deal of economical problems in apiarian production and comercialization sector. This situation affects directly to Spain, since is the most important EU country in honey production and comercialization. Nowadays, honey adulteration is made, mainly, by using vegetal siropes, resulting in an adulterated product similar in taste to natural honey, but fraudulent, and including substances that consumer unknowingly ingests. Therefore, the European Comission is promoting the development of new analytical methods which complement or replace the already existing ones.

 

The main drawbacks of the already existing techniques are:

  1. There is no a unique technique which allows to identify, in a reliable way, an adulteration; therefore, in order to be conclusive, several analytical determinations are needed;
  2. They are only available in central laboratories, which directly affects to the companies quality control process, slowing it down and rising its costs;
  3. They requiere high qualified staff;
  4. They requiere long time analysis periods (hours)
  5. They have not enough resolution to detect the target substances sometimes.

 

 

DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast and low cost. The proposed technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the substances used in honey adulteration.

 

In this scenario, techniques based on DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast (analysis periods: minutes) and low cost. In this research project, the use of a novel technology in the field of food control adulteration is proposed. This technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the plant substances used in honey adulteration. The use of those mentioned nanostructures generates a mechanic-acoustic amplification effect and, moreover, allow to separate the sensor transduction mechanism from the biochemical recognition process (DNA hybridization). The expected result is an increase of more than one order of magnitude in the sensor response when comparing it with the response of a sensor without the nanostructure coating.

The research proposed in this project deals with new challenges:

  1. The use of a new recognition method based on DNA detection;
  2. The use of nanostructures which provide a mechanic-acoustic amplification and a separation of the transduction mechanism from the biochemical recognition process;
  3. The use of a new technique for sample dispensing based on an in-batch method.

 

To deal with these challenges, a multidisciplinary research team of experts in micro and nano electronics, advanced materials and biotechonology is required to guarantee the succes of the project. AWSensors will collaborate with this team of scientists from the Polytechnic University of Valencia, in Spain, (Bioengineering Research and Innovation Center and University Institute of Food Engineering for Development) and University Pierre et Marie Curie, in France (Laboratoire interfaces et systémes electroquimiques). Other honey companies such as Apisol, Honeygreen, Cooperativa Apícola de España, Granalbe and Primo Mendoza are interested in the results of the project.

Bio-Logic AWS-A20 at Biosensing Conference

AWSensors at the 5th International Conference on Biosensing technology

May 4th 2017

AWSensors technology will be at the  5th International Conference on Bio-sensing technology to be held at Riva del Garda, Italy, from May 7th to 10th. We are pleased to invite you to see our biosensing platforms at the booth of Bio-Logic, our OEM distributor.

AWS A20-F20 platform is the most flexible and sensitive QCM-D system in the market. It is able to work with low and high frequency QCM sensors and SAW sensors. It also ensures high sensitivity because of a novel method of characterization that keeps noise at very low level in spite of working at high frequencies by using AWS-HFF sensors (100-150 MHz). AWSensors also provides QCM and SAW sensors and a wide range of cells and accessories to customize experiments and tests according to specific conditions required by scientists.

Therefore, AWS A20 system provides you with big competitive advantages:

–       High flexibility, capable to work with any acoustic wave sensor; modular system capable to be upgraded with more channels after purchase (up to 4)

–       High sensitivity

–       Customization, with accessories to make measurements in specific conditions

–       Price convenience

Do not miss the opportunity to check the advantages of our technology at the booth of Bio-Logic and meet our Application Scientist, Mrs. María García.

Why using AWSensors technology in Lithium-Ion Battery Research?

February 9th 2017

AWSensors and the second largest university in Israel, Bar-Ilan University, signed an agreement to collaborate on lithium-ion battery and energy storage research. AWSensors will work with the Group of Electrochemistry, the most important of Israel. It is led by Professor Doron Aurbach, awarded in 2005 by the Electrochemical Society (ECS) for his work on batteries. He will also receive the 2017 Alan J. Bard Award in Electrochemical Science.  The Award is considered one of the greatest honors in electrochemistry.

We talked with Prof. Mikhael Levi, who will lead the Collaboration Agreement,  about why he is interested in using AWSensors technology. Here we present a brief summary about what he told us.

– Could you explain briefly your interest in battery and energy storage research?

The interest stems from the attempt to a deeper understand the mechanism of ions intercalation into battery electrodes. A more simple case relates to electrode behaviors in aqueous solutions because of negligible effect of the parasitic reactions, absence of surface-electrolyte interfaces (SEI), higher conductivity of solutions compared to that in aprotic solvents, etc. A more complicated and practical case relates to Li-battery electrodes in non-aqueous (aprotic) solutions when extremely high potentials of cathodes and extremely low potentials of anodes are reached. At these extreme potentials a strong competition between the intercalation reactions and parasitic processes of decomposition of electrolyte solutions occurs. On the one hand, this makes interpretation of QCM data non-trivial requiring a rigorous control over keeping external conditions constant (temperature, pressure, non-slipping interfaces, bubble gas evolution, etc). On the other hand, QCM-based research can provide reliable information on tracking the mechanical properties of surface-electrolyte interfaces (SEI) which major role is to prevent or at least to reduce the effect of the parasitic reactions. By QCM-based research we understand it beyond the gravimetric method of operation and analysis implying easy access to not only resonant frequency but also to the related motional resistance or other similar damping characteristics such as resonance peak width or dissipation factor.

– Why do you feel that the agreement with AWSensors will benefit your research interest?

I have mentioned that the extreme operating potentials of anodes and cathodes cause numerous difficulties in QCM applications.  We are currently trying to overcome may be the most severe difficulty in adjusting QCM technique for battery electrodes characterization by matching QCM measurement conditions to the conditions used in practical Li-ion batteries. In practical batteries the ratio of active electrode mass to mass of solution is large ensuring suppressed contribution of parasitic reactions, diminishing of self-discharge rate, increasing capacity retention and ensuring good Faradaic efficiency.

QCM measurements relate to flooded cell with the reverse ratio of electrode and electrolyte mass: the mass of the electrode coating used in QCM is limited to low-mass-approximation. On the other hand, the amount of electrolyte in contact with the crystal is high. In principle the amount of electrolyte is limited by the penetration depth (much less then micron).However it is difficult to build the electrochemical cell with such a small separation.

Attempts to increase the loading mass are linked to recording precise shape of the resonance curves on different harmonics to check vertical and spatial heterogeneity of thick coatings, pre-requisite for deciding whether harmonic analysis can be applied to intercalation processes in thick electrodes. We are sure viscoelastic effects are present in thick electrodes already in air and the role of viscoelastic effect increases after contact with liquids.

 

Are you investigating on batteries?

Are you interested in learning more about AWSensors technology?

 

 

Please, CONTACT US for information about the coming workshop on lithium-ion battery research with AWSensors instruments.

new analysis software

New analysis software

A new full-featured analysis software is already available for AWS-A20 platforms. User will be able to make QCM experiments with or without electrochemistry in a very simple, fast and intuitive way because AWS Suite software has been specifically designed to ensure an optimal user experience.

It allows effortless management of multiple, different devices, including AWS A20 system, AWS F20 fluidics module and Bio-Logic potentiostats/galvanostats, from a single interface view. Furthermore, the software allows remote access to devices by IP address within the network.

Better data management

Good data management is crucial to ensure quality research. Therefore, new features have been implemented as a solution to match this need. AWS Suite organizes all the data in a simple file system based in the creation and management of projects. The software guides the user in creating and configuring QCM and eQCM experiments, as well as in the application of modeling tools for data analysis.

User-friendly displays and modelling tool

For a better user experience, improved graphic displays containing more graphic tools, automatic annotations and simple computations are featured, in addition to an electronic notebook available in every experiment to keep records of additional information within the experiment file.

Easy access to experiment configuration, data and visualization

AWS Suite allows the user to revisit experiment configuration, data and visualization in a straightforward manner, as well as to import the configuration of previous experiments to quickly reproduce them.

AWSensors developers team has made a huge effort to understand the workflow and needs of users so that the use of the new program is really intuitive, simple and fast.

Workshop on AWSensors technology hold at Northwestern University

Free workshop on AWSensors technology to be held at Northwestern University, US

May 13th 2016

Are you interested in how acoustic wave sensors could be useful for your research? Join the workshop on AWSensors technology to be held next June 14th at Cook Hall RM 2058, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, United States.

Prof. Antonio Arnau, founder of AWSensors, and Dr. Jose Vicente García, Product Engineering Manager, will give a session on classical quartz crystal sensors and other highly sensitive technologies such as AWS high fundamental frequency sensors. Furthermore, some biosensing and electrochemistry experiments will be conducted, so that the attendees will have the opportunity to see how the AWSensors equipment works.

We are very grateful for being hosted by Prof. Shull and his research group from the Department of Materials Science and Engineering in Northwestern University. Prof. Shull will introduce the workshop. He is one of the most prestigious researchers on the properties of polymer surfaces and interfaces, with a research emphasis on the adhesion of “soft materials”, including traditional pressure-sensitive adhesives and highly specialized polymeric gels commonly used in biomedical applications. His group is currently using AWSensors platform and they are publishing results. Our EQCM probe module was especially designed for Prof. Shull group and now it is being sold succesfully to other labs.

We would like to appreciate the assistance given by Kazi Sadman, researcher at Prof. Shull group, to organize this workshop. Please, if you are interested in attending, do not hesitate to contact us directly or by registering here.

We will be more than happy to meet you at Northwestern University!

Cook Hall Northwester University

Bio Convention San Francisco

Meet us at Bio Convention in San Francisco, US

May 13th 2016

AWSensors will join the Bio Convention next week in San Francisco, US. You may meet us at Spanish Pavilion in booth 605 or in the one-on-one partnering in the Bio Business Forum.

Prof. Antonio Arnau will attend the convention to explain how AWS sensing technology works and its applications in health or agri-food research. Furthermore he will introduce the european project LiqBiopSens and how our sensing technology will be used to developed a liquid biopsy platform for early detection of colorectal cancer.

The Bio International Convention (BIO) attracts over 15,000 biotechnology leaders. We will spend one week of intensive networking to discover new opportunities and promising partnerships with some biotech, pharma and industry leaders and several academic institutions that are attending the most important event in the biotech industry worldwide.. This event covers a wide spectrum of life science and application areas including nanotechnology, drug discovery, genomics, cell therapy or biofuels.

70% out of R+D in bio field is conducted in US where there are more than 2500 companies in this sector.

We are proud to attend the event along with other Spanish biotech companies, a group of about 70 companies together in the Spanish pavilion as you can look up at the SpainBio catalogue.

If you would like to meet with Prof. Arnau in San Francisco from june 6 to 9, do not hesitate to contact us!

AWSensors at Biosensors 2016

AWSensors technology at Biosensors 2016

May 13th 2016

Visit the booth of our distributor, Bio-Logic, to see our new products

Just one week left for Biosensors 2016! AWSensors technology will be at the most prestigious congress on biosensing research to be held at Gothenburg, Sweden from May 25th to 26th. We are pleased to invite you to see our platforms at the booth of Bio-Logic, our OEM distributor. There, you will see how our platform works.

Our equipment is the only quartz crystal microbalance that allows:

–           Detection and characterization of interface phenomena with high sensitivity (up to 0.05 ng/cm2)

–           Use of different kind of sensors simultaneously.

Our technology is based on two fundamental principles:

  1. Use of high fundamental frequency acoustic resonators (100-150 MHz) that provides a large increase in sensitivity.
  2. Use of a novel method for characterizing these sensors which keeps noise at very low level.

As a result, an improvement in the limit of detection (LOD) of 2 orders of magnitude compared to traditional acoustic sensors is obtained.

Do not miss the opportunity to check the advantages of our new technology and meet AWSensors founder, Prof. Antonio Arnau. He is coordinator of the International Network of Piezoelectric Transducers Research and Applications (PETRA) and has wide expertise on bioelectronics and acoustic wave biosensors.

Dr. Arnau will attend the Post Congress Symposium in Cancer Diagnostics to be held on Saturday 28 May inmediately following Biosensors 2016. AWSensors is currently coordinating LiqBiopSens European Project to develop a new liquid biopsy platform for early detection of colorectal cancer.

Bio-Logic, new distributor of our electrochemistry instruments

February 22th 2016

AWSensors is proud to announce the agreement with the French multinational Bio-Logic Science Instruments. We are now the original equipment manufacturer (OEM) for the Acoustic Sensing System distributed by this company, a real-time and sensitive system to monitor surface-bound interactions, such as adsorption and desorption processes, characterization of molecular interactions, protein conformational changes, etc.

As a result of this agreement, Bio-logic has exclusive rights to sell AWSensors platforms for electrochemistry applications because our platforms can be coupled to a Bio-Logic potentiostat/galvanostat system to perform e-QCM measurements for the most demanding experimental requirements.

AWSensors will keep selling directly its instruments for bio applications.

Bio-Logic company has a wide expertise in scientific instruments for high-performance applications such as:

  •  Electrochemistry
  • Spectroscopy and photosynthesis
  • Batteries and Power Test
  • Test material
  • Scanning electrochemical systems
  • Electrophysiology

Bio-Logic is headquartered in France, in the town of Claix, and it has offices in the US and India and a large and growing network of distributors worldwide. Therefore, this agreement allows AWSensors to offer local distributors and local technical support to customers.

We appreciate the confidence that Bio-logic has on AWSensors technology and we are convinced that this agreement will be extremely beneficial for everyone interested in cutting-edge acoustic sensing technology.

Unión Europea - FEDER