Posts

Bio-Logic AWS-A20 at Biosensing Conference

AWSensors at the 5th International Conference on Biosensing technology

May 4th 2017

AWSensors technology will be at the  5th International Conference on Bio-sensing technology to be held at Riva del Garda, Italy, from May 7th to 10th. We are pleased to invite you to see our biosensing platforms at the booth of Bio-Logic, our OEM distributor.

AWS A20-F20 platform is the most flexible and sensitive QCM-D system in the market. It is able to work with low and high frequency QCM sensors and SAW sensors. It also ensures high sensitivity because of a novel method of characterization that keeps noise at very low level in spite of working at high frequencies by using AWS-HFF sensors (100-150 MHz). AWSensors also provides QCM and SAW sensors and a wide range of cells and accessories to customize experiments and tests according to specific conditions required by scientists.

Therefore, AWS A20 system provides you with big competitive advantages:

–       High flexibility, capable to work with any acoustic wave sensor; modular system capable to be upgraded with more channels after purchase (up to 4)

–       High sensitivity

–       Customization, with accessories to make measurements in specific conditions

–       Price convenience

Do not miss the opportunity to check the advantages of our technology at the booth of Bio-Logic and meet our Application Scientist, Mrs. María García.

Further sensitivity enhancement of HFF-QCM immunosensors for pesticides

Authors: C. March, J.V. García, R. Fernández, Y.Jiménez, A. Arnau. A.Montoya

Event: 4th International Conference on Biosensing Technology, Lisbon (2015)

Recently, High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensors have succesfully been developed. Therefore, sensitivity of QCM biosensors is no longer a drawback. Taking advantage of this previous work, we have developed a renewed highly sensitive HFF piezoelectric immunosensor using carbaryl insecticide as a model analyte for pesticide detection. To this purpose, 100 MHz quartz crystal sensors were used as the transducer elements of the biosensor and a monoclonal antibody-based competitive immunoassay was integrated as the sensing specific bio-recognition event. The biosensing interface was improved by employing mixed self-assembled monolayers (mSAMs) of alkane thiols as intermediate layers for surface functionalization. This approach allowed the covalent attachment of the assay conjugate (20.0 µg mL-¹ of BSA-CNH conjugate) onto the gold electrode surface in a more orderly and stable way than with simple SAMs. A very low concentration (1.0 µg mL-¹) of LIB-CNH45 monoclonal antibody was used for the competitive immunoassays. All immunosensor assays were performed in the AWS-A10 test platform from AWSensors. In terms of analytical performance, the new carbaryl HFF-QCM immunosensor showed higher sensitivity than the previously developed one, with analytical parameters very close to those of the most sensitive reported ELISA for carbaryl.

CLICK HERE TO DOWNLOAD THE POSTER about this work