Tag Archive for: QCMD

QCMD-webinar

QCM-D Webinar

May 24th 2021: AWSensors is pleased to invite you to participate in a QCM-D Scientific Webinar its Distributor Technex, in the BENELUX area, and AWSensors are orginizing. The scientific talk is entitled “Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM-D)” and  will be given by Prof. Diethelm Johannsmann.

 

QCMD Webinar

QCM-D Webinar details

The webinar will take place on Thursday, June 10th, 2021 from 15:00 to 16:30 hrs and it will be free of charge.

To join us, please register on this link: http://eepurl.com/gDLYUD and we will send you the Webinar details.

Speaker’s Short Biography

Diethelm Johannsmann is Professor of Physical Chemistry and the director of the Physical Chemistry Institute at Clausthal University of Technology, Germany. He has made fundamental contributions to the subject of QCM(D), reflected in more than 150 articles, several book chapters, and books. His model is widely used in the analysis of QCM-D data, and he developed free software for QCM-D data analysis and modelling.  You can find more information about his work on his website, https://www.pc.tu-clausthal.de/en/research/johannsmann-group/prof-dr-diethelm-johannsmann/.

 

QCMD Immunosensor

New QCMD Immunosensor Application Note

May 20th 2021: AWSensors is pleased to invite you to take a look to its new Immunosensor Application Note entitled “QCMD immunosensor for small molecule analytes“.

Summary of the Note

A QCMD-based immunoassay for label-free analysis of small molecule concentration in industrial samples was developed using an AWS QCMD system with surface-modified 5 MHz fundamental frequency QCMD sensors. Accuracy and precision of the immunoassay is evaluated with respect to the industry-standard HPLC reference.

QCMD Immunosensor

Introduction

Accurate, rapid, and cost-effective quantification of small molecule analytes is a pressing problem in various industrial (food, agriculture, environmental protection) and health-related fields. Existing approaches include enzyme-linked immunosorbent assays (ELISAs) and various types of chromatography (e.g., High Performance Liquid Chromatography, HPLC). These approaches require trained personal and centralized laboratories, and their deployment in the field is difficult or impossible.

Quartz Crystal Microbalance with Dissipation, or QCMD, is emerging as a promising technology for the development of fast, portable, automated, and cost-effective immunosensors. Here, we demonstrate a competitive small molecule immunoassay based on the AWSensors QCMD technology.


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application Notes.

Other references

Antibodies

Antibody Detection with Quartz Crystal Microbalance

May 10th 2021: AWSensors offers acoustic sensors for antibody detection. Acoustic biosensor-based immunosensing with  High-Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) and Love-SAW sensors offers several advantages over Enzyme Linked Immuno Assay (ELISA) or Surface Plasmon Resonance (SPR).

Acoustic sensors antibody detection advantages over ELISA

  • Sensitivity approximately as a standard ELISA or better.
  • Acoustic sensors offer label-free detection of the antibody-antigen binding.
  • Full automation.
  • Pre-calibrated (the user does not need to run the standards. More samples can be run. Reduced cost per sample).
  • Speed.
  • Quantitative real-time /in-situ monitoring.
  • Turn-key solution (no need to specialized detection equipment, reader, or spectrophotometer).
  • Reduced complexity, relaxed requirements for trained personnel.
  • Small volumes (~ 10 of ul per sample).
  • Parallelization and multiple analyte detection through sensor arrays.
  • Sensor re-usablity, leading to reduced assay cost.

Acoustic sensors antibody detection advantages over SPR

  • Better sensitivity.
  • QCM also sees solvent.
  • Provides conformational information of the surface film.
  • Miniaturization and integration into portable systems.
  • Easier to develop parallel and multiple analyte assays through sensor arrays.
  • Affordability.

Therefore, one can develop biosensors based on acoustic immunosensors with highly attractive features in order to rapidly detect pathogens like viruses and bacteria [1], and low molecular weigh compounds.

Application Example

Our Biosensor Application Note  is an application example where we describe a sensitive detection of a low molecular weight pesticide carbaryl using competitive immunoassay with hapen-conjugates immobilized on high-fundamental frequency QCMD sensors, SAMs and monoclonal antibodies (MAb) [2, 3]. As a result, we achieved a very sensitive detection of the carbaryl analyte.

Biosensor

 

References

[1] Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review 

[2] High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors

[3] Love Wave Immunosensor for the Detection of Carbaryl Pesticide  

X4 QCMD System

X4 Launching

January 19th 2021: X4 launching

AWSensors is pleased to announce the launching of its new Advanced Multichannel QCMD system, the X4 Instrument, which allows the users to boost their productivity.

X4 Instrument


Visit X4 launching Landing-page

Learn more about this new instrument in its landing page.

QCMD in Lipid Research

QCMD in Lipid Research Tech Note

October 15th 2020: AWSensors is pleased to invite you to take a look to its Technology Note entitled “QCMD in Lipid Research”.

Summary of the Note

QCMD is a label-free surface-analytical technique based on a quartz resonator excited to oscillate at its resonance frequency on one or more overtones. Resonators can have various coatings: gold (Au), silica (SiO2), titania (TiO2), etc. It works in aqueous media or organic solvents and is therefore widely used for studying solid/liquid interfaces. At each overtone, QCMD measures changes in the resonance frequency and energy dissipation due to the processes occurring at the resonator surface. Examples of such processes include formation of a film or changes in the geometrical or physical properties of the film.

The key feature that makes QCMD useful in lipid research is its ability to distinguish between different geometries and topologies of lipidic assemblies at interfaces, for example, homogenous solid-supported bilayers or monolayers vs. adsorbed liposomes or other structures (such as cubosomes) without relying on fluorescent or deuterated labels but by relying on the combination of the frequency and dissipation.

QCMD in Lipid Research

Introduction

Lipid-related QCMD work can be grouped into several topics, with a total of more than a thousand publications:
• Studies focusing on the interactions between lipids and surfaces.
• Studies focusing on the properties of the lipids, such as their phase behavior, adsorbed liposome deformation, etc.
• Studies examining interactions between lipids and membrane-binding proteins, peptides or viruses. Particularly interesting is that QCMD offers a way to study clustering of membrane-bound proteins.
• Studies focusing on the interactions of lipids with polymers or with nanoparticles.

 

Continue reading by downloading the full Technology Note (below) …


Download Full Technology Note

You can download the full Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

QCMD

QCMD New Technology Note