

HFF-QCM immunosensor for fast and sensitive detection of DDT in honey

L. Belenguer¹, M. Visquert,¹ M. Juan-Borrás¹, I. Escriche¹, R. Fernández,² J.V. García², A. Arnau³, Y. Jiménez³, J.J. Manclús³, A. Montoya³ ¹Instituo Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD), ³Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitat Politècnica de València. ²Advanced Wave Sensors, Valencia (Spain)

SUMMARY

- \succ The control of chemical residues is essential in honey's marketing to ensure consumer safety.
- Equipments available in the market reach the required limit of detection (LOD) (e.g Liquid Cromatography -HPLC) but are not suitable for insitu implantation in honey packaging industry. The reasons are:
 - Require highly qualified staff
 - High cost Ο
 - Time-consuming

antigen-antibody recognition process, are alternative or complementary technologies suitable for chemical residues control in food.

- > The analytical performance of AWS A20 and AWS F20 platforms (based on HFF-QCM technology), has been tested for the detection of pesticide residues (DDT) in honey.
- > AWS platforms lead to the following **benefits**:
 - Lower cost
 - Less sample/reagent consumption
- Other approaches available in the market, although faster and without the need of qualified staff, do not reach the required LODs.
- > Piezoelectric immunosensors based on High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) combined with an

- Label-free, direct and real time transduction
- > DDT standard curves performed in laboratory buffer provided:
 - Sensitivity (estimated as the I_{50} value): 0.62 µg/L
 - \circ LOD in the 0.05 0.1 µg/L range.

EXPERIMENTAL SETUP AND TEST PLATFORMS AWS A20 AND AWS F20

Scheme of AWS A20 and AWS F20 platforms

HFF-QCM sensor chip and flow cell assembly

AWS A20

AWS F20

HFF-QCM Standard Curve for DDT

- Concentration of immobilized <u>BSA-DDT5 conjugate: 10 μg/ml</u>
- Concentration of LIB-DDT5.25 monoclonal antibody: 0.5 µg/ml Ο
- Inter-assay regeneration: 0.1 M HCI Ο

Analytical Parameters

Analytical performance of the **HFF-QCM** immunosensor for DDT as compared to previously developed ELISA and SPR immunosensor

Analytical parameters (µg L ⁻¹)	HFF-QCM immunosensor	ELISA ¹	SPR immunosensor ²
I ₅₀	0.62	0.74	1.06
LOD	0.08	0.15	0.03
LOQ	0.16	0.22	0.11
WR	0.16 – 2.37	0.22 - 2.47	0.11 - 10.07

¹Estimate from *Abad et al., 1997. J. Agric. Food Chem. 45, 3694-3702.* ² Mauriz et al., 2007. Biosens. Bioelectron. 22, 1410-1418.

REMARKS

RESULTS

- > A HFF-QCM immunosensor for DDT insecticide has been developed.
- Efficient interfaces achieved by covalent biosensing were functionalization of the sensor gold electrodes with mixed alkane-thiol self-assembled monolayers (**mSAMs**).
- > The limits of detection (LOD) and quantification (LOQ) and the working range (WR) of the developed HFF-QCM immunosensor for DDT are in the same order of magnitude as those previously reported for ELISA and SPR immunosensor.

