A monoclonal antibody-based piezoelectric immunosensor for the analysis of carbaryl

Authors: C. March, A. Abad, A. Arnau, Y. Jiménez, T. Sogorb, A. Montoya

Event: 4th MGPR International Symposium of pesticides in food and the environment in Mediterranean Countries. Pine Bay Holiday Resort Kusadasi-Aydin. Turkey (2005)

 

Immunosensors combine immunoassay selectivity with the high sensitivity often provided by electronic signal transducers. In this communication, the development of a monoclonal antibody-based Piezoelectric Immunosensor for the analysis of carbaryl is described and coupled to BSA were covalently attached to gold coated AT- cut 9 MHz quartz crystals, previously functionalized with a self-assembled alkanethiol monolayer. The crystal was inserted in a homemade Arnite cell that allowed only one face of the crystal to be in contact with the reagents. The cell was integrated in a flow-through system and pesticide detection was accomplished by competitive immunoassay in the conjugate-coated format. The assay consisted of the incubation of the analyte with a specific monoclonal antibody, followed by the immunoreaction of the mixture with the carbaryl derivative immobilized on the sensor surface. The frequency variations of the piezoelectric crystal were measured with a commercial Research Quartz Crystal Microbalance (RQCM) and correlated with the carbaryl concentration in the standards. The total time required for a complete assay cycle, including regeneration, was 20 min. As it corresponds to binding inhibition immunoassays, the frequency signal provided by the sensor was inversely proportional to the analyte concentration. A sigmoidal calibration curve was obtained by fitting experimental points to a four-parameter equation. The immunoassay sensitivity, expressed as the carbaryl concentration that reduced the assay signal by 50% (I50), was around 25 µg/l. The inhibition curve would allow the detection of carbaryl in fruits and vegetables at European regulatory levels.

Viscoelastic characterization of electrochemically prepared conducting polymer films by impedance analysis at Quartz Crystal. Study of the surface roughness effect on the effective values of the thickness and viscoelastic properties of the coating

Authors: Y. Jiménez, R.Torres, A. Arnau, M.Otero, E. Forzani, E.J. Calvo

Event: XVIII International Symposium on Biolectrochemistry and Bioenergetics of the Bioelectrochemical society in conjuction with 3rd spring meeting of the International Society of Electrochemistry (ISE). Coimbra, Portugal (2005)

 

An Electrochemical Quartz Crystal Microbalance is used for a continuous monitoring of the growth of the polymer poly(3,4-ethylenedioxy) thiopene tetrabutyammonium perchlorate (PEDT-TBAP), which is electro-polymerized in acetonitrile on a gold electrode of a 10 MHz quartz crystal resonator. The surface acoustic impedance of the resonator is analyzed starting from the electrical admittance continuously measured by means of a network analyzer. Changes in the acoustic impedance suggest that a mechanical resonance phenomenon occurs during the electro-deposition of the coating. In order to determine the origin of this effect, the evolution of the physical properties of the coating is analyzed. The extraction of the physical properties of the coating is carried out by means of an algorithm recently developed by the authors. Four sets of coating properties are obtained with the algorithm in four different conditions. In one of them an additional technique, ellipsometry, is used to have an alternative measurement of the coating thickness; no additional techniques are necessary in the rest of the cases. All the cases show a significant change in the viscoelastic properties of the coating during the time-interval of the suspected mechanical resonance. Changes in the surface roughness of the coating during the experiment are confirmed by scanning electron microscopy (SEM). The analysis of the surface roughness of the coating and its effect on the effective values of the coating properties, seem to indicate that the changes in the viscoelastic properties are due to the changes in the surface roughness of the coating, and that these changes are responsible for the mechanical resonance effect. This analysis is carried out by means of the same algorithm which is used, in this case, as a simulation tool.

Viscoelastic characterization of electrochemically prepared conducting polymer films by impedance analysis at Quartz Crystal. Study of the surface roughness effect on the effective values of the thickness and viscoelastic properties of the coating

Authors: A. Arnau, Y. Jiménez, R. Torres

Event: 5th edition of Acoustic Wave Based Sensors: Fundamentals, Concepts, New Applications. Physikzentrum Bad Honnef, Germany (2005)

 

An Electrochemical Quartz Crystal Microbalance is used for a continuous monitoring of the growth of the polymer poly(3,4-ethylenedioxy) thiopene tetrabutyammonium perchlorate (PEDT-TBAP), which is electro-polymerized in acetonitrile of a gold electrode of a 10 MHz quartz crystal resonator. The surface acoustic impedance of the resonator is analyzed starting from the electrical admittance continuously measured by means of a network analyzer. Changes in the acoustic impedance suggest that a mechanical resonance phenomenon occurs during the electro-deposition of the coating. In order to determine the origin of this effect, the evolution of the physical properties of the coating is analyzed. The extraction of the physical properties of the coating is carried out by means of an algorithm recently developed by the authors. Four sets of coating properties are obtained with the algorithm in four different conditions. In one of them an additional technique, ellipsometry, is used to have an alternative measurement of the coating thickness, no additional techniques are necessary in the rest of the cases. All the cases show a significant change in the viscoelastic properties of the coating during the time-interval of the suspected mechanical resonance. Changes in the surface roughness of the coating during the experiment are confirmed by scanning electron microscopy (SEM). The analysis of the surface roughness of the coating and its effect on the effective values of the coating properties, seem to indicate that the changes in the viscoelastic properties are due to the changes in the surface roughness of the coating, and that these changes are responsible for the mechanical resonance effect. This analysis is carried out by means of the same algorithm which is used, in this case, as a simulation tool.

 

 

A new roughness physical model for describing the mechanical impedance of a coated shear resonator immersed in liquids

Authors: A. Arnau, Y. Jiménez, R. Fernández

Event: 5th edition of Acoustic Wave Based Sensors: Fundamentals, Concepts, New Applications. Physikzentrum Bad Honnef, Germany (2005)

 

The models that describe the surface acoustic impedance at the surface of a coated AT quartz sensor should include the effects of the roughness, both the roughness of the crystal surface and the roughness of the coating. When these effects  are not kept in mind, the values of the physical magnitudes extracted starting from the measurable characteristic parameters of the sensor, usually the complete admittance spectrum around resonance or the frequency and motional resistance shifts, can be erroneous. In this work a model that facilitates the understanding of the physical phenomena that happen when a rough surface oscillates in contact with a fluid is presented. This model characterizes the roughness like a surface of spheroids of variable magnitudes. The solution of the Navier-Stokes equation applied to this allows the obtaining of the acoustic impedance of the rough surface in contact with the liquid, and even to extend the pattern to those cases in which the rough layer has viscoelastic properties.