Noticias para apartado News

Battery electrodes EQCM study

EQCM Application Note

November 27th 2020: AWSensors is pleased to invite you to take a look to the its new electrochemical QCM (EQCM) Application Note on battery electrodes entitled “In-Situ Study of Composite LiFeP04 Electrodes for Battery Applications“.

Summary of the Note

Use of AWSensors X1 instrument in combination with a compatible potentiostat to perform an electrochemical study of various processes accompanying Li-ion intercalation into battery and supercapacitor electrodes onto the gold surface of 5 MHz QCM sensors.

Battery electrodes EQCM study

 

Introduction

SeLiFePO4 (LFP) electrode is widely used in Lithium Ion Batteries (LIB) as a practical cathode. It is considered as one of the safest, toughest and most cost-effective cathodes for lithium batteries available today. It possesses a stable electrochemical response, expressed by sharp intercalation and deintercalation peaks during voltammetric cycling. The relatively low working potentials of the LFP provide an electrochemically stable potential window in which only Li insertion/extraction processes take place without the contribution of parasitic processes associated with high operation potentials.

Continue reading by downloading the full Application Note (below) …


Download Full Application Note

You can download the full EQCM Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

Intertationalization of AWSensors

25 de noviembre del 2020/ November 25th 2020

 

Advanced Waves Sensors S.L. (AWSensors) ha sido beneficiaria del Fondo Europeo de Desarrollo Regional cuyo objetivo es mejorar la competitividad de las Pymes y gracias al cual ha puesto en marcha un Plan de Internacionalización con el objetivo de mejorar su posicionamiento competitivo en el exterior durante el año 2020. Para ello ha contado con el apoyo del Programa XPANDE DIGITAL de la Cámara de Comercio de Valencia.

 


 

QCMD in Lipid Research

QCMD in Lipid Research Tech Note

October 15th 2020: AWSensors is pleased to invite you to take a look to its Technology Note entitled “QCMD in Lipid Research”.

Summary of the Note

QCMD is a label-free surface-analytical technique based on a quartz resonator excited to oscillate at its resonance frequency on one or more overtones. Resonators can have various coatings: gold (Au), silica (SiO2), titania (TiO2), etc. It works in aqueous media or organic solvents and is therefore widely used for studying solid/liquid interfaces. At each overtone, QCMD measures changes in the resonance frequency and energy dissipation due to the processes occurring at the resonator surface. Examples of such processes include formation of a film or changes in the geometrical or physical properties of the film.

The key feature that makes QCMD useful in lipid research is its ability to distinguish between different geometries and topologies of lipidic assemblies at interfaces, for example, homogenous solid-supported bilayers or monolayers vs. adsorbed liposomes or other structures (such as cubosomes) without relying on fluorescent or deuterated labels but by relying on the combination of the frequency and dissipation.

QCMD in Lipid Research

Introduction

Lipid-related QCMD work can be grouped into several topics, with a total of more than a thousand publications:
• Studies focusing on the interactions between lipids and surfaces.
• Studies focusing on the properties of the lipids, such as their phase behavior, adsorbed liposome deformation, etc.
• Studies examining interactions between lipids and membrane-binding proteins, peptides or viruses. Particularly interesting is that QCMD offers a way to study clustering of membrane-bound proteins.
• Studies focusing on the interactions of lipids with polymers or with nanoparticles.

 

Continue reading by downloading the full Technology Note (below) …


Download Full Technology Note

You can download the full Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

Tracking Recovery

Tracking Recovery Technology Note

September 15th 2020: AWSensors is pleased to invite you to take a look to its new Technology Note entitled “Tracking Recovery Technology Note”.

Summary of the Note

Use of the AWSensors X1 Instrument Tracking Recover feature to monitor overtones frequency and dissipation shifts of air-to-liquid medium exchanges onto 5 MHz QCM sensors.

Tracking Recovery

Introduction

The Tracking Recovery feature included in AWSensors X1 platform allows the user to monitor large and fast frequency shifts in QCM (Quartz Crystal Microbalance) admittance spectrum. These sudden modifications in the sensor response are common is some applications where dramatical changes in the viscoelastic properties of the sensor surrounding medium take place.

This technical note illustrates the utility of tracking recovery feature to characterize an air-to-liquid medium exchange. According to Kanazawa and Gordon theory predictions [1], a complex frequency shift is expected in the sensor electromechanical response when the semi-infinite medium placed over the QCM’s top electrode is replaced by other semi-infinite medium. This shift will depend on the viscosity and density properties of the final medium. Following, Kanazawa-Gordon equation is presented for both the frequency (Eq. 1) and the half-bandwidth (Eq. 2) shifts.

Continue reading by downloading the full Technology Note (below) …


Download Full Technology Note

You can download the full Note in pdf file from this link or download it from our Technology Web Page where you can find this and the rest of our Application and Technology Notes.

Biosensor

Biosensor Application Note

July 3rd 2020: AWSensors is pleased to invite you to take a look to the Biosensor Application Note entitled “Acoustic Biosensor“.

Summary of the Note

An immunosensor application for determination of carbaryl pesticide was developed by using AWS A20 research platform and AWS F20 Fluidic System. Carbaryl was chosen as the model analyte. Two kinds of acoustic sensors were employed: AWS HFF-QCM sensors (50 MHz and 100 MHz) and Love-SAW sensors with appropriate cells. The AWS A20 platform allowed monitoring phase-shift changes at constant frequency as a function of the sensor surface mass changes.

Biosensor

Introduction

Sensor functionalization: Carbaryl hapten conjugate was covalently immobilized by means of Self Assembled Monolayer (SAM).

Immunoassay format: The chosen competitive immunoassay was a binding-inhibition test based on conjugate-coated format. Carbaryl analyte competes against the immobilized hapten-conjugate for Monoclonal Antibodies.

Carbaryl detection: Samples were injected onto the sensors’ surfaces. AWS software allowed controlling sample injection and fluidics. Furthermore, the employed platform allowed performing the measurements at a constant temperature of 25°C ± 0.05°C.

Since analyte inhibits antibody binding to its respective immobilized conjugates, increasing concentrations of analyte are detected by a change in the increment of the phase-shift of the sensor. The following figures present a representative assay cycle selected from a continuous monitoring in a carbaryl determination, for 100 MHz HFF QCM and 120MHz Love Wave Sensors.

Continue reading by downloading the full Application Note (below) …


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

QCMD

QCMD New Technology Note

June 3rd 2020: AWSensors is pleased to announce the release of its new Technology Note on Quartz Crystal Microbalance with Dissipation entitled “AWSensors QCMD“.

Summary of the Note

Advanced Wave Sensors is a company that designs, develops, and manufactures ultra-sensitive sensing systems based on the quartz crystal microbalance with dissipation (QCMD) measurement technology. In this Note the technology basics are explained.

QCM-technology

Introduction

At the core of the QCMD technology is a piezoelectric resonator, typically made of quartz, that is excited to oscillate at its resonance frequency in the thickness-shear mode by applying an alternating current through the electrodes deposited on its surface.

With the resonator oscillating in the thickness shear mode, its two surfaces move in the opposite directions, as indicated by the arrows in Figure 2. The wavelength of the shear wave, λ, is therefore twice the thickness of the sensor, ? = 2? . Because ?? = ? , where ? = √(??/??) , is the speed of shear sound in the material and ? is the frequency, the resonance frequency of such a resonator is given by ?? = ??/2? = (?/2?) √(??/??), where ?? is the shear modulus of quartz, ?? is its density, and ? is the (odd) overtone order. The same expression may be derived formally by solving the equations describing the propagation of shear waves in elastic media subject to appropriate boundary conditions, as discussed in ref. 1. Plugging in 29×109 Pa for the shear modulus of AT quartz and 2650 kg/m3 for the density, one obtains a frequency of ~ 5 MHz for a thickness of ~ 330 um at the fundamental, where n = 1.

Continue reading downloading the full Technology Note (below) …


Download Full Technology Note

You can download the full Technology Note in pdf file from this link or download it from our Technology Web Page where you can find this and the rest of our Technology Notes.

SLB

Lipid Bilayers New Application Note

May 15h 2020: AWSensors is pleased to announce the release of its new Application Note on Supported Lipid Bilayers (SLB) entitled “Supported Lipid Bilayer formation followed at low- and high-fundamental frequencies“.

Summary of the Note

The process of supported lipid bilayer (SLB) formation from adsorbed liposomes is a robust biophysical system that is used in laboratories all over the world. Here, it is used to test AWSensors Quartz Crystal Microbalance with Dissipation measurement (QCMD) equipment and high fundamental frequency QCMD sensors. It is shown that the AWSensors QCMD system correctly and quantitatiely reports the frequency and dissipation changes associated with the SLB formation on high- and low-fundamental frequency SiO2-coated sensors. Some differences between the two types of sensors are highlighted. SLB

Introduction

Quartz crystal microbalance with dissipation measurement, or QCMD, has become a popular technique for research in such disparate fields as material science, biophysics, electrochemistry, and immunosensing. [1] One of the reasons for the wide range of applicability and popularity of QCMD is its ability to provide information about molecular organization (topology and geometry) at solid/liquid interfaces. Specifically, it was shown how the combination of frequency and dissipation could distinguish between different surface-immobilized lipidic assemblies: adsorbed liposomes and supported lipid bilayers (SLBs; Figure 1).[2] This allowed the process of SLB formation from liposomes on SiO2-coated QCMD sensors to be followed in situ.[2] Subsequent studies further showed how the combination of frequency and dissipation measurements on various overtones could be used to study adsorbed liposome deformation [3,4] and detect mutations through the analysis of DNA conformation and length. [5, 6]

Continue reading downloading the full Application Note (below) …


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

Liqbiopsens project

AWSENSORS HOSTS THE 24M MEETING OF LIQBIOPSENS EUROPEAN PROJECT

February 1st 2018

AWSensors host the 24-Month Meeting of LIQBIOPSENS EU project

The meeting of all the project partners was held in Valencia, Spain, at the headquarters of AWSensors and Sistemas Genómicos, where significant advances were presented between the project partners and important decisions were taken to successfully continue pursuing the project goals. Another whole year is still required to complete the project.

The consortium for the development of this project is composed of the following institutions: Servicio Andaluz de Salud (Spain), Université Catholique de Louvin (Belgium),  Foundation for Research and Technology Hellas (Greec), DestiNA Genomics (UK, Spain), Sistemas Genómicos (Spain) and AWSensors (Spain). AWSesensor.

If you wish to know more about the LIQBIOPSENS project, visit the project website at http://liqbiopsens.com.

 


Biotechnology business

AWSENSORS RAISED 1M€ INVESTMENT

July 27th 2017

Swedish and Spanish companies invested in AWSensors seeing a growth opportunity.

AWSensors raised 1M€ investment round to strengthen its position in scientific market and enter the healthcare tech market, one of the most competitive markets. The company though has convinced Swedish and Spanish investors that the potential payoff is worth the risk.

Firms entering into the investment round were BAble Capital, a venture capital firm that aims to invest in technology-based companies from Spanish universities and research centers, and Tech Transfer UPV, a venture capital firm created specifically to transfer technology developed at the Spanish university, Polytechnic University of Valencia. But also a consortium of Swedish companies invested in AWSensors seeing a growth opportunity. Other Spanish companies like PolymerChar, Keodes or Citrosol are also among the shareholders.

Prof. Arnau, founder of AWSensors

AWSensors, led by Prof. Antonio Arnau, expects to speed up innovation processes to launch new scientific equipments to meet demand from scientists and industry R&D but also to develop cutting-edge healthcare technology to be applied in personalized medicine.

The aim of these new developments is to get a blood test meant to catch cancer when it’s most treatable, before patients show symptoms, by detecting fragments of DNA shed by tumors.  A new liquid biopsy system will allow for detection of this circulating DNA and its mutations and will be an essential equipment to help doctors diagnose, monitor and treat cancer patients in a personalized way.

To hit that goal, AWSensors got another 1M€ from European Comission through two H2020 European projects:

  • LiqBiopSens project, that is coordinated by AWSensors and developed together with companies and institutions from Spain, Belgium, UK and Greece.
  • Catch-u-DNA project, which is carried out with partners from Germany, France, Israel, Greece and Spain.

These projects as a whole were funded with 5.7M€ by European Comission.


AWSENSORS CONSIGUE UNA INVERSIÓN DE 1 MILLÓN DE EUROS

Nuevos inversores de Suecia y España entran en el accionariado de la compañía

AWSensors ha conseguido despertar el interés de inversores nacionales e internacionales y realizar una ronda de 1 millón de euros. En la operación de inversión han participado BeAble Capital, sociedad gestora que tiene como objetivo invertir en empresas de base tecnológica con origen en universidades y centros de investigación españoles, y Tech Transfer UPV, fondo creado específicamente para trasladar al mercado tecnología desarrollada en la Universidad Politécnica de Valencia. Pero también un consorcio de empresas tecnológicas suecas ha apostado fuerte por entrar como inversor en AWSensors. Además, empresas valencianas como PolymerChar, Keodes o Citrosol están también entre los accionistas.

Esta inversión permitirá a AWSensors consolidarse en el mercado científico internacional donde comercializa una nueva tecnología patentada de sensores para análisis de interacciones moleculares en tiempo real que utilizan investigadores de Europa, Estados Unidos y Asia en los campos de ciencias de la vida y nuevos materiales.

La compañía, liderada por el Prof. Antonio Arnau, espera invertir en nueva infraestructura de fabricación y captar nuevo talento para su plantilla. El objetivo es acelerar el proceso de innovación para sacar al mercado nuevos equipos con mayor productividad y automatización e iniciar nuevos desarrollos para el mercado de salud, ya que la tecnología de AWSensors podrá ser aplicada en medicina personalizada.

Uno de los desarrollos previstos para el mercado sanitario es un equipo para la detección precoz de cáncer colorrectal y su monitorización sin necesidad de entrar al quirófano para realizar una biopsia del tumor. Servirá con un análisis de sangre cuyos resultados se podrían obtener en una hora. La detección en este caso se basa en el ADN que libera el tumor en el organismo. El nuevo sistema permitirá detectar ese ADN circulante y las mutaciones que sufre asociadas al cáncer. Este análisis, denominado biopsia líquida, permitirá un control sencillo del paciente y facilitará por tanto la adaptación del tratamiento de forma personalizada.

Liqbiopsens project

Este nuevo equipo se está desarrollando junto a otras empresas e instituciones de España, Bélgica, Reino Unido y Grecia dentro del proyecto LiqBiopSens financiado por la Comisión Europea dentro del programa H2020. Un proyecto que ha inyectado medio millón de euros a AWSensors.

Paralelamente a este desarrollo, AWSensors participa en otro proyecto europeo, Catch-u-DNA que investiga una nueva técnica para mejorar la sensibilidad de la tecnología en la detección del ADN circulante. Este proyecto, que se realiza con socios de Alemania, Francia, Israel, Grecia y España, ha supuesto el ingreso de medio millón de euros más en la compañía.

En total, la Comisión Europea ha dotado con 5’7 millones de euros a estos dos proyectos de investigación cuyos resultados impulsarán el crecimiento de AWSensor

Catch-u-DNA project towards a new technology for molecular diagnosis

New project to validate an easier and faster technique of molecular diagnosis applied to cancer by using quartz sensors

July 7th 2017

In 2015 AWSensors already got the European project “LiqBiopSens” to develop a liquid biopsy platform for early detection and monitoring of colorectal cancer. Now, the company will work in the European  project “CATCH-U-DNA”, worth 3.4 million euros. CATCH-U-DNA poses a new concept in biophysics and molecular diagnosis based on acoustic sensing of DNA in serum. It aims to provide a novel technology for the ultrasensitive detection of circulating-tumor DNA in serum without PCR amplification.

“CATCH-U-DNA” project was granted under the Horizon 2020 FET-OPEN call, aimed at financing radically new initiatives that can have a long-term economic and social impact. Only the most cutting-edge technology projects are chosen. It is one of the most competitive European programs, where less than 4 per cent of the ideas presented are funded. The project is coordinated by Prof. Electra Gizeli, leader of the Biosensors group in the Institute of Molecular Biology and Biotechnology of the Greek Foundation for Research and Technology-Hellas (FORTH).

Detection of lung and colorectal cancer

The ultimate goal of “CATCH-U-DNA” is to validate a new, simpler and cheaper technology for the detection of genetic markers so that personalized medical diagnosis can be performed in a more precise, easy and affordable way than current technologies.

The project faces the ambitious challenge of testing that radically new technology in the early diagnosis of cancer by detecting the most common genetic mutations that cause colorectal cancer and lung cancer. In fact, it includes not only experimental research but also clinical trials.

In the future, it will be possible to incorporate this new technique into portable equipment and will therefore allow on-site analysis applied to personalized medicine in developed countries or in areas without laboratory infrastructure such as underdeveloped countries.

New technique easier, more affordable and more precise

The amount of mutated DNA in a sample is generally very low, which greatly hampers its detection and characterization. Most of the current methods of detection are based on the technique known as PCR (polymerase chain reaction), which allows amplifying a fragment of DNA by obtaining millions of copies, thus, its detection in the lab is feasible. However, this technique involves a complex and expensive procedure prior to detection. In addition, it may cause a deviation if the amplification is not developed properly.

The “CATCH-U-DNA” technology promises to overcome these limitations and allow for the genetic analysis of human samples in an easier, more affordable and more precise way. The aim is to manufacture an ultra-sensitive device capable of detecting DNA in human samples without any previous amplification procedure even though the amount of that DNA is minimal. Specifically, the goal is the detection of circulating DNA, fragments from the tumor cells found in the blood.

The new technique will use high frequency quartz crystal sensor arrays that allow for a real-time, label-free monitoring, in combination with a revolutionary DNA identification system based on the hydrodynamic molecular properties. This approach will allow to push the detection limit down obviating the amplification.

7 companies and organizations from 5 different countries

The “CATCH-U-DNA” project will be developed over 3 years. Experts in molecular biology, physics, chemistry, nanomaterials, biosensors and microfluidics from Spain, Germany, France, Greece and Israel are involved. They are from the Greek Foundation for Research and Technology Hellas (FORTH), which is the project coordinator, and from AWSensors; the Autonomous University of Madrid, in Spain; the University of Crete in Greece; the Curie Institute in France; the Ben Gurion University of Negev in Israel and the German company Jobst Technologies.