Tag Archive for: interfacial ion dynamics

Publication on AWSensors technology

Interfacial charge storage mechanisms of composite electrodes based on poly(ortho-phenylenediamine)/carbon nanotubes via advanced electrogravimetry

Authors: El Mahdi Halim, Rezan Demir-Cakan, Hubert Perrot, Mama El Rhazi, Ozlem Sel

Journal: The Journal of Chemical Physics (2022)

 

Abstract

To reach a deeper understanding of the charge storage mechanisms of electrode materials is one of the challenges toward improving their energy storage performance. Herein, we investigate the interfacial ion exchange of a composite electrode made of carbon nanotube/poly( ortho-phenylenediamine) (CNT/P oPD) in a 1M NaCl aqueous electrolyte via advanced electrogravimetric analyses based on electrochemical quartz crystal microbalance (EQCM). Classical EQCM at different scan rates of the potential revealed the complex electrogravimetric behavior likely due to multi-species participation at different temporal scales. Thereafter, in order to better understand the behavior of each species (ions, counter ions, and co-ions) in the charge compensation mechanism, the electrogravimetric impedance spectroscopy analysis (also called ac-electrogravimetry) was pursued. Ac-electrogravimetry revealed the role of each species where Na + cations and Cl − anions as well as protons participate in the charge compensation mechanism of the CNT/P oPD composite with different kinetics and proportions. The water molecules with opposite flux direction with the cations are also detected, suggesting their exclusion during cationic species transfer. Having analyzed ac-electrogravimetry responses in depth, the synergistic interaction between the CNT and P oPD is highlighted, revealing the improved accessibility of species to new sites in the composite.

 

You may read the full paper here.

Publication on AWSensors technology

Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability

Authors: El Mahdi Halim, Rezan Demir-Cakan, Hubert Perrot, Mama El Rhazi, Ozlem Sel

Journal: The Journal of Power Sources (2019)

 

Abstract

An integrated electrogravimetric study based on electrochemical quartz crystal microbalance (EQCM) unravels the interfacial ion transfer phenomena of the poly(ortho-phenylenediamine) (PoPD) thin film electrodes. Through a methodology coupling QCM with electrochemical impedance spectroscopy (ac-electrogravimetry), our work indicates that charge compensation process of PoPD in aqueous electrolytes (in acidified NaCl) occurs with the participation of multiple species, each playing a role at different temporal scales. The PoPD films are tested in a 2 electrode Swagelok cell in which Zn is used as both reference and counter electrodes and exhibit excellent stability over 8000 cycles with a relatively high specific capacitance of about 110 F g−1 at 30 C (0.63 mA cm−2) current density. The high rate capability and the excellent cycling stability of the PoPD electrodes are correlated to the electrolyte composition and the significant role of H+ to the charge compensation process is unravelled, which is made possible with coupled electrogravimetric methods of our study. By determining the interfacial flux dynamics and as well as the relative proportions of species transferred at the electrode/electrolyte interface, our results contribute to the understanding of the charge-discharge process of PoPD polymer, yet underexplored but emerging as a pseudo-capacitive electrode material.

You may read the full paper here.