Tag Archive for: silica coated sensors

Publication on AWSensors technology

Matrix Metalloproteinase-9 Mediates Endothelial Glycocalyx Degradation and Correlates with Severity of Hemorrhagic Fever with Renal Syndrome

Authors: Chloé Jacquet. Rasmus Gustafsson, Ankit Kumar Patel, Magnus Hansson, Gregory Rankin, Fouzia Bano, Julia Wigren Byström, Anders Blomberg, Johan Rasmuson, Simon Satchell, Therese Thunberg, Clas Ahlm, Marta Bally, Anne-Marie Fors Connolly

Journal: medRxiv Preprint

Abstract: Hemorrhagic fever with renal syndrome (HFRS) caused by Puumala virus (PUUV) leads to vascular dysfunction contributing to acute kidney injury and pulmonary complications. The endothelial glycocalyx (eGLX) is crucial for vascular integrity, and its degradation may exacerbate disease severity. In this study, we examined the association between eGLX degradation and renal and pulmonary dysfunction in 44 patients with laboratory-confirmed PUUV infection. We measured plasma levels of eGLX degradation markers—syndecan-1, heparan sulfate, soluble thrombomodulin, and albumin— and found that these correlated with severe acute kidney injury and the need for oxygen therapy. In vitro experiments showed that matrix metalloproteinase-9 (MMP-9) and heparanase can degrade eGLX components, but albumin at physiological concentrations can mitigate this degradation and protect endothelial barrier function. These findings indicate that eGLX degradation contributes to HFRS pathogenesis and suggest that targeting the eGLX could be a therapeutic strategy to improve patient outcomes.

The full article can be accessed here.

Publication on AWSensors technology

Site-specific sulfations regulate the physicochemical properties of papillomavirus–heparan sulfate interactions for entry

Authors: Fouzia Bano, Laura Soria-Martinez, Dominik van Bodegraven, Konrad Throsteinsson, Anna M. Brown, Ines Fels, Nicole L. Snyder, Marta Bally, Mario Schelhaas

Journal: Science Advances

Abstract: Certain human papillomaviruses (HPVs) are etiological agents for several anogenital and oropharyngeal cancers. During initial infection, HPV16, the most prevalent cancer-causing type, specifically interacts with heparan sulfates (HSs), not only enabling initial cell attachment but also triggering a crucial conformational change in viral capsids termed structural activation. It is unknown, whether these HPV16-HS interactions depend on HS sulfation patterns. Thus, we probed potential roles of HS sulfations using cell-based functional and physicochemical assays, including single-molecule force spectroscopy. Our results demonstrate that N-sulfation of HS is crucial for virus binding and structural activation by providing high-affinity sites, and that additional 6O-sulfation is required to mechanically stabilize the interaction, whereas 2O-sulfation and 3O-sulfation are mostly dispensable. Together, our findings identify the contribution of HS sulfation patterns to HPV16 binding and structural activation and reveal how distinct sulfation groups of HS synergize to facilitate HPV16 entry, which, in turn, likely influences the tropism of HPVs.

The full article can be accessed here.