Tag Archive for: X1

Publication on AWSensors technology

Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load

Authors: Claes-Olof A. Olsson, Anna Neus Igual-Muñoz and Stefano Mischler

JournalChemosensors (2023)

 

Abstract

The main output from an Electrochemical Quartz Crystal Microbalance is a frequency shift. This note describes how to separate the mass- and viscous load contributions to this shift by a calibration procedure. The mass calibration is made by electroplating from a copper sulfate solution in ethanol/water with 100% current efficiency. An estimate of viscous load is obtained by measuring the energy dissipation and is related to frequency change using the Kanazawa–Gordon equation. Two approaches are discussed: either by performing calibration experiments in a series of water–glycerol mixtures or by following oscillations in frequency and dissipation by collecting data during the stabilization phase of the experiment.

 

You may read the full paper here.

Publication on AWSensors technology

Modifying last layer in polyelectrolyte multilayer coatings for capillary electrophoresis of proteins

Authors: Sébastien Roca, Laurent Leclercq, Philippe Gonzalez, Laura Dhellemmes, Laurent Boiteau, Gaulthier Rydzek, and Hervé Cottet

JournalJournal of Chromatography A (2023)

 

Abstract

Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.

 

You may read the full paper here.

Scientific publication

Synthesis and covalent immobilization of redox-active metallopolymers for organic phase electrochemistry

Authors: Hanna Hübner, Riccardo Candeago, Deborah Schmitt, Alexander Schießer, Beichen Xiong, Markus Gallei and Xiao Su.
Journal: Polymer (2022) 244, 124656.

 

Abstract

Redox-active metallopolymers are promising stimuli-responsive platforms for a range of applications including sensing, energy storage, and selective separations. In particular, heterogeneously-functionalized metallopolymers can modulate the capture and release of target molecules, driven by redox electron-transfer. However, prior metallopolymer-functionalized electrodes have been fabricated by non-covalent methods, and tailored for aqueous phase applications. As such, despite the existing potential for heterogeneous applications in organic phase, there are significant constraints to the stability of metallopolymers in organic solvents, including high solubility in solvents such as chloroform or tetrahydrofuran. We propose the immobilization of thiol-functionalized redox-active metallopolymers on metallic surfaces as a facile way to enhance stability and cyclability in organic media, and thus broaden the applicability of redox-metallopolymers for organic phase applications. We explore the anionic polymerization of metal-containing monomers vinylferrocene (VFc) and ferrocenyldimethylsilane (FS), and their thiol end-functionalization by living anionic polymerization strategies. PFS and PVFc with molar masses ranging from 1800 to 49900 g mol−1 and 2900 to 6300 g mol−1 respectively were prepared with a segment of poly(ethylene sulfide), as characterized by size-exclusion chromatography, NMR spectroscopy, MALDI/ToF, thermogravimetry, and elemental analysis. Both metallopolymers were immobilized on gold substrates by a grafting-to protocol, with demonstrated redox-responsiveness by electrochemical control. In the case of immobilized PVFc, operando electrochemical testing demonstrated the stable and reversible electrochemical cycling capabilities (>74% maximum current retained after 100 oxidation/reduction cycles) in several organic solvents including chloroform, tetrahydrofuran, ethanol, methanol, acetonitrile, and acetone. Immobilized PFS was stable in chloroform, with a 83% maximum current retained after 100 oxidation/reduction cycles. We envision future applications of these covalently immobilized metallopolymers for a broad range of fields from selective separations to sensing and energy storage.

 

You may read the full paper here.