European Flag

BioprintedQCM, proyecto de Consolidación de la Cadena de Valor Empresarial

Advanced Wave Sensors S.L. (AWSensors), en el marco del programa “Proyectos de Consolidación de la Cadena de Valor Empresarial” (Convocatoria 2023), ha contado con el apoyo de la Agència Valenciana de la Innovació y con la cofinanciación del fondo europeo FEDER para el desarrollo de un proyecto de investigación industrial en el campo de los biosensores. El proyecto dió comienzo en octubre de 2023 y tiene prevista una duración de 27 meses, hasta su finalización en diciembre de 2025. El proyecto cuenta con una subvención de 178.219,62 €.

El objetivo principal de este proyecto es la investigación de procesos industriales necesarios para el desarrollo de nuevas técnicas de bio-funcionalización superficial que permita la inmovilización de sondas de biorreconocimiento, tales como aptámeros, anticuerpos o secuencias de ADN, en la superficie de microrresonadores acústicos de una manera precisa, controlada, rápida, repetitiva, y a un coste reducido.

La técnica BioprintedQCM se aplicará en el desarrollo de nuevos biosensores basados en dispositivos HFF-QCM ARRAY, propiedad de AWSensors.

«Actuación susceptible de ser cofinanciada por la Unión Europea»

European Flag

Financiación europea para la adecuación de nuestras instalaciones

Advanced Wave Sensors S.L. (AWSensors) ha obtenido una operación de préstamo cofinanciada por la Unión Europea a través del Programa Operativo del Fondo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020, todo ello de conformidad con lo previsto en el anexo XII del Reglamento (UE) 1303/2013 del Parlamento Europeo y del Consejo de 17 de diciembre de 2013. La financiación ha sido gestionada a través del Institut Valencià de Finances en el ámbito del instrumento financiero «Préstamos bonificados IVF PYME REACT-EU FEDER» del Programa operativo FEDER de la Comunitat Valenciana 2014-2020.

«Una manera de hacer Europa»

European Flag

Sensobac, biosensores para detección de bacterias viables en agua potable

Advanced Wave Sensors S.L. (AWSensors), en el marco del programa “Proyectos Estratégicos en Cooperación“, ha contado con el apoyo de la Agència Valenciana de la Innovació y con la cofinanciación del fondo europeo FEDER para el desarrollo de un proyecto de investigación industrial en el campo de los biosensores. El proyecto lo lidera AWSensors, junto con la Universitat de Politècnica de València y la Empresa Mixta Valenciana de Aguas, S.A., comenzando en mayo de 2022 y finalizando en septiembre de 2024. El proyecto cuenta con un presupuesto total de 297.531,75 € con una subvención de 178.519,05 €.

El objetivo principal de este proyecto es desarrollar una nueva técnica analítica de biosensores para la detección temprana de biomarcadores ligados a presencia de bacterias en la red de distribución de agua potable que funcione como un sistema de alerta y vigilancia constante. La tecnología propuesta, basada en la tecnología sensora QCMD de AWSensors, supone una ventaja respecto a las tecnologías disponibles por su robustez, sensibilidad, detección directa en tiempo real, capacidad de análisis multianualito, bajo coste por ensayo, bajo coste por sensor, modularidad y su facilidad de uso.

Durante el transcurso del proyecto, se trabajará en la selección de un conjunto de biomarcadores que permitan su cuantificación y relación con la presencia y viabilidad de bacterias en aguas, se desarrollaron protocolos analíticos de validación primero a nivel de laboratorio y, posteriormente, sobre la plataforma biosensora desarrollada a tal efecto.

«Actuación susceptible de ser cofinanciada por la Unión Europea»

honey

AWSensors technology to develop a DNA biosensor for detection of honey adulteration

May 15th 2017

AWSensors technology will be used in a new research project funded by Spanish Government (Retos Investigación 2017-2019) to develop a DNA biosensor for detection of honey adulteration. Honey companies are interested in this biosensor because new and cheaper analytical methods are required to meet the quality controls set by European Comission.

One of the priority challenges of the European Union (EU) is “Quality and Security in Food”. Food adulteration is a topic of interest in several fields: health care, legal (since it is a fraud) and economic (since it generates unfair competition). In this context, honey is one of the most commonly adulterated food, which generates a great deal of economical problems in apiarian production and comercialization sector. This situation affects directly to Spain, since is the most important EU country in honey production and comercialization. Nowadays, honey adulteration is made, mainly, by using vegetal siropes, resulting in an adulterated product similar in taste to natural honey, but fraudulent, and including substances that consumer unknowingly ingests. Therefore, the European Comission is promoting the development of new analytical methods which complement or replace the already existing ones.

 

The main drawbacks of the already existing techniques are:

  1. There is no a unique technique which allows to identify, in a reliable way, an adulteration; therefore, in order to be conclusive, several analytical determinations are needed;
  2. They are only available in central laboratories, which directly affects to the companies quality control process, slowing it down and rising its costs;
  3. They requiere high qualified staff;
  4. They requiere long time analysis periods (hours)
  5. They have not enough resolution to detect the target substances sometimes.

 

 

DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast and low cost. The proposed technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the substances used in honey adulteration.

 

In this scenario, techniques based on DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast (analysis periods: minutes) and low cost. In this research project, the use of a novel technology in the field of food control adulteration is proposed. This technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the plant substances used in honey adulteration. The use of those mentioned nanostructures generates a mechanic-acoustic amplification effect and, moreover, allow to separate the sensor transduction mechanism from the biochemical recognition process (DNA hybridization). The expected result is an increase of more than one order of magnitude in the sensor response when comparing it with the response of a sensor without the nanostructure coating.

The research proposed in this project deals with new challenges:

  1. The use of a new recognition method based on DNA detection;
  2. The use of nanostructures which provide a mechanic-acoustic amplification and a separation of the transduction mechanism from the biochemical recognition process;
  3. The use of a new technique for sample dispensing based on an in-batch method.

 

To deal with these challenges, a multidisciplinary research team of experts in micro and nano electronics, advanced materials and biotechonology is required to guarantee the succes of the project. AWSensors will collaborate with this team of scientists from the Polytechnic University of Valencia, in Spain, (Bioengineering Research and Innovation Center and University Institute of Food Engineering for Development) and University Pierre et Marie Curie, in France (Laboratoire interfaces et systémes electroquimiques). Other honey companies such as Apisol, Honeygreen, Cooperativa Apícola de España, Granalbe and Primo Mendoza are interested in the results of the project.

DNA

H2020 Project LiqBiopSens: A new liquid biopsy platform for early detection of colorrectal cancer

December 10th 2015

We are proud to announce that the European Comission awarded a grant of a total value of 2’7M euros to our project LIQBIOPSENS for early detection of colorectal cancer by carrying out liquid biopsy. The grant was awarded within Horizon2020 and specifically in the call entitled “ICT-28-2015: Cross cutting ICT Key Enabling Technologies”.

 

AWSensors will coordinate this H2020 project during the next 3 years (2016-2018). The overall aim of this project is the further development and validation in real settings of a novel diagnostic platform for the early and fast detection of circulating tumor DNA (ctDNA) and their KRAS and BRAF mutations associated to colorectal cancer through blood samples.

Liquid Biopsy platform LiqBiopSens features

The main features of LiqBiopSens are:

  1. Reliability (detection rates vary from 95-100 %)
  2. Low-Cost
  3. Sensitivity (in the zM range)
  4. Multiplexing capabilities (analysis of 27 KRAS and BRAF mutations simultaneously)
  5. Short analysis time (30-60 min.)
  6. User-friendly interface
  7. Flexibility

LIQBIOPSENS platform is based on the integration of two novel complementary technologies:

  • DGL© technology property of DestiNA Genomics Ltd, capable of delivering faster, more error-free detection of DNA and their mutations than current enzyme-based detection systems, making ‘false positive’ results a thing of the past.
  • A novel high resolution acoustic wave microsensor technology property of AWSensors, that allows an accurate, inexpensive, label-free, direct and real-time transduction method to quantitatively evaluate the results of the application of the mentioned DGL© technique.

However, solution proposed by the LIQBIOPSENS project relies on the multidisciplinary integration of different key enabled technologies. Accordingly, LiqBiopSens will be accomplished by AWSensors and Destina Genomics in collaboration with the following partners:

Liquid Biopsy platform LiqBiopSens concept

The operating concept of our project is described in the following representative scheme:

Early detection of colorrectal cancer by liquid biopsy

ctDNA amplicons produced in chamber (1) are denatured and transferred to the sensors surface via   microfluidics (2) where hybridization with DGL probes takes place; mutation‐discrimination is carried out during the injection (3) of novel probes which click selectively on the target DNA (4) while acoustic detection exploits functionalized nanoparticles (5).

Colorectal cancer, the second most common cause of cancer death

The most frequently occurring forms of cancer in the EU are colorectal, breast, prostate and lung cancers. In men, lung cancer is the most frequent cause of cancer death, while in women, it is breast cancer. In both men and women, colorectal cancer is the second most common cause of cancer death.

The “gold standard” for identifying the type and extent of a cancer is a tissue biopsy, in which a small sample of tissue is taken from the suspected tumour and histologically examined. While this procedure can provide important information about the patient disease, tissue biopsy can be painful, represents a single snap-shot in time, is subjected to significant selection bias and if the tumour tested was first detected by palpation or imaging, it may already be so large that the disease is well advanced. Furthermore, when the tumour tissue is removed or it is inaccessible, these genotyping techniques are impossible. Therefore, cancer remains a ghost disease when primary tumours are removed through surgery, meaning that there are not tools to assess the efficiency of treatments or prevent metastasis.

Liquid Biopsy, a revolution in the fight against cancer

It has long been known that solid tumors release DNA in the blood and the load of circulating tumor DNA (ctDNA) has been correlated to staging and prognosis. However, only recent advances in the sensitivity and accuracy of DNA analysis have allowed for genotyping of somatic changes found in tumors by interrogating ctDNA. This technique is known as ‘Liquid Biopsy’ and it is based on the analysis of a biomarker that can be easily isolated from many body fluids (blood, saliva, urine, ascites, pleural effusion, etc.).

 

Successful implementations of liquid biopsy techniques to track tumor dynamics in real time and for the early detection, such as LIQBIOPSENS, are going to revolutionise how clinicians fight against cancer.