Categoría publications

Scientific publication

Structure and transition behavior of crosslinked poly(2-(2-methoxyethoxy) ethylmethacrylate-co-(ethyleneglycol) methacrylate) gel film on cellulosic-based flat substrate

Authors: Yangyi Chen, Tong Su, Shihang Zhou, Chendi Xie, Huan Qi , Zaisheng Cai and Liqun Chen

Journal: e-Polymers

Abstract

The structure and transition behavior of crosslinked thermo-responsive poly(2-(2-methoxyethoxy) ethylmethacrylate-co-(ethyleneglycol) methacrylate) (P(MEO2MA-co-EGMA360)) gel film on a flat cellulosic-based substrate were investigated. The regenerated cellulose (RC) film was prepared by spin-coating with trimethylsilyl cellulose (TMSC), followed by etching with hydrochloric acid vapor on a treated silicon wafer, then crosslinked polymer gel film was obtained by spin-coating, drying, and baking with a pre-crosslinked solution containing polymers. Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, and atomic force microscopy results show that a RC film with a thickness of 25 nm is generated in the upper layer of TMSC film on the silicon wafer. The cross-linking induces closer arrangement and hinders the extension of chain segments, leading to less prominent phase transition behaviors of polymer gel films. By quartz crystal microbalance measurement and 3D microscopes, a phase transition hysteresis is discovered, the hydrated and loose structure of crosslinked polymer gel film switches to dehydrated and compact structure in initial heating process, which subsequently recovers during the following cooling process. However, the degrees of rehydration and flexibility of film could not reach the initial value because of the insufficient transition time and steric hindrance caused by crosslinking.

You may access the publication here.

Scientific publication

High-Frequency Quartz Crystal Microbalance and Dual-Signaling Electrochemical Ratiometric Assays of PTP1B Activity Based on COF@Au@Fc Hybrids

Authors: Shuping Liu, Qingqing Zhang, Xiaohua Zhang, Cuicui Du, Shihui Si, and Jinhua Chen

Journal: Analytical Chemistry

Abstract

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent–organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium–tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.

You may read the full paper here.

Scientific publication

Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform

Authors: Shuping Liu, Qingqing Zhang, Xiaohua Zhang, Cuicui Du, Jinhua Chen, Shihui Si

Journal: Talanta

Abstract

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5′-phosphate-DNAs (P-DNA) through Au–S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01–100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.

You may read the full paper here.

Publication on AWSensors technology

Acoustic detection of a mutation-specific Ligase Chain Reaction based on liposome amplification

Authors: Nikoletta Naoumi, Monica Araya-Farias, Maria Megariti, Lucile Alexandre, George Papadakis, Stephanie Descroix, and Electra Gizeli

Journal: Analyst

Abstract

Single nucleotide variants (SNVs) play a crucial role in understanding genetic diseases, cancer development, and personalized medicine. However, existing ligase-based amplification and detection techniques, such as Rolling Circle Amplification and Ligase Detection Reaction, suffer from low efficiency and difficulties in product detection. To address these limitations, we propose a novel approach that combines Ligase Chain Reaction (LCR) with acoustic detection using highly dissipative liposomes. In our study, we are using LCR combined with biotin- and cholesterol-tagged primers to produce amplicons also modified at each end with a biotin and cholesterol molecule. We then apply the LCR mix without any purification directly on a neutravidin modified QCM device Au-surface, where the produced amplicons can bind specifically through the biotin end. To improve sensitivity, we finally introduce liposomes as signal enhancers. For demonstration, we used the detection of the BRAF V600E point mutation versus the wild-type allele, achieving an impressive detection limit of 220 aM of the mutant target in the presence of the same amount of the wild type. Finally, we combined the assay with a microfluidic fluidized bed DNA extraction technology, offering the potential for semi-automated detection of SNVs in patients’ crude samples. Overall, our LCR/acoustic method outperforms other LCR-based approaches and surface ligation biosensing techniques in terms of detection efficiency and time. It effectively overcomes challenges related to DNA detection, making it applicable in diverse fields, including genetic disease and pathogen detection.

You may read the full paper here.

Publication on AWSensors technology

Quartz crystal microbalance in soft and biological interfaces

Authors: Ilya Reviakine

Journal: Biointephases (2024)

 

Abstract


Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.

You may read the full paper here.

Publication on AWSensors technology

C60-based Multivalent Glycoporphyrins Inhibit SARS-CoV-2 Specific Interaction with the DC-SIGN Transmembrane Receptor

Authors: Jennifer Patino-Alonso, Justo Cabrera-González, Javier Merino, Gema Nieto-Ortiz, Fátima Lasala, Jouma Katati, Carlos H. Bezerra da Cruz, Ajay K. Monnappa, Pablo Mateos-Gil, Ángeles Canales, Iván López-Montero, Beatriz M. Illescas, Rafael Delgado, and Nazario Martín

Journal: Small (2023)

 

Abstract

Since WHO has declared the COVID-19 outbreak a global pandemic, nearly seven million deaths have been reported. This efficient spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is facilitated by the ability of the spike glycoprotein to bind multiple cell membrane receptors. Although ACE2 is identified as the main receptor for SARS-CoV-2, other receptors could play a role in viral entry. Among others, C-type lectins such as DC-SIGN are identified as efficient trans-receptor for SARS-CoV-2 infection, so the use of glycomimetics to inhibit the infection through the DC-SIGN blockade is an encouraging approach. In this regard, multivalent nanostructures based on glycosylated [60]fullerenes linked to a central porphyrin scaffold have been designed and tested against DC-SIGN-mediated SARS-CoV-2 infection. First results show an outstanding inhibition of the trans-infection up to 90%. In addition, a deeper understanding of nanostructure-receptor binding is achieved through microscopy techniques, high-resolution NMR experiments, Quartz Crystal Microbalance experiments, and molecular dynamic simulations.

You may read the full paper here.

Publication on AWSensors technology

Chemical and Mechanical Properties of Drying Oils during Polymerization

Author: Gwen dePolo

PhD Thesis: Northwestern University (September 2023)

 

Abstract

Drying oils have been used as a binding medium for oil paints since the 15th century. These oil paints transition from a liquid-like paste to a solid-like film as a result of crosslinks forming between the oil molecules. These reactions have been extensively studied chemically, but other material properties are not as well characterized for drying oils. Oil paints are typically used in complex composite structures where the mechanical properties matter just as much as the chemical properties. This thesis focuses on understanding the evolution of mechanical properties during drying oil polymerization.

 

You may read the full text here.

Publication on AWSensors technology

Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin

Authors: Michał Grabka, Krzysztof Jasek and Zygfryd Witkiewicz

Journal: Sensors (2023)

 

Abstract

A Love-type acoustic wave sensor (AT-cut quartz substrate, SiO2 guiding layer) with a center frequency of approximately 120 MHz was used to detect a simulant of pathogenic botulinum neurotoxin type A—recombinant of BoNT-A light chain—in liquid samples. The sensor was prepared by immobilizing monoclonal antibodies specific for botulinum neurotoxin via a thiol monolayer deposited on a gold substrate. Studies have shown that the sensor enables selective analyte detection within a few minutes. In addition, the sensor can be used several times (regeneration of the sensor is possible using a low pH buffer). Nevertheless, the detectability of the analyte is relatively low compared to other analytical techniques that can be used for rapid detection of botulinum neurotoxin. The obtained results confirm the operation of the proposed sensor and give hope for further development of this label-free technique for detecting botulinum neurotoxin.

Surface Acoustic Wave (Love-SAW) immunosensor for detection of botulinum neurotoxin. Source: Sensors 2023, 23(18), 7688

You may read the full paper here.

Publication on AWSensors technology

Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load

Authors: Claes-Olof A. Olsson, Anna Neus Igual-Muñoz and Stefano Mischler

JournalChemosensors (2023)

 

Abstract

The main output from an Electrochemical Quartz Crystal Microbalance is a frequency shift. This note describes how to separate the mass- and viscous load contributions to this shift by a calibration procedure. The mass calibration is made by electroplating from a copper sulfate solution in ethanol/water with 100% current efficiency. An estimate of viscous load is obtained by measuring the energy dissipation and is related to frequency change using the Kanazawa–Gordon equation. Two approaches are discussed: either by performing calibration experiments in a series of water–glycerol mixtures or by following oscillations in frequency and dissipation by collecting data during the stabilization phase of the experiment.

 

You may read the full paper here.

Publication on AWSensors technology

Highly Ordered Graphene Polydopamine Composite Allowing Fast Motion of Cations: Toward a High-Performance Microsupercapacitor

Authors: Adnane Bouzina, René Meng, Cyrille Bazin, Hubert Perrot, Ozlem Sel, Catherine Debiemme-Chouvy

JournalAdv. Mater. Interfaces (2023)

 

Abstract

The simple and eco-friendly preparation of microsupercapacitor remains a great challenge. Here are presented the preparation and the characterizations of an all-solid symmetric micro-supercapacitor based on a new composite formed of highly ordered graphene sheets due to the presence of polydopamine between the layers, which present a d-spacing of 0.356 nm. This graphene-polydopamine composite is prepared by electroreduction of graphene oxide (GO) followed by the electrooxidation of dopamine added into the initial solution, i.e., after GO reduction. In Na2SO4 solution, this composite material shows excellent capacitance and stability even at a high scan rate (2 V s−1) and a very low relaxation time (τ0) of 62 ms. This value is in very good agreement with the high transfer kinetic and low transfer resistance values of the ions implied in the charge storage process (Na+·2H2O and Na+) determined by ac-electrogravimetry. Finally, it is shown that the all-solid micro-supercapacitor (interdigitated electrodes obtained using a CO2 laser and Na2SO4/PVA hydrogel) prepared with this new composite delivers a remarkable energy density of 6.36 mWh cm−3 for a power density of 0.22 W cm−3 and exhibits excellent cycling stability (98% of retention after 10 000 cycles at 2 V s−1).

 

You may read the full paper here.