Publication on AWSensors technology

Exploiting the high affinity between cellulose nanofibrils and Aloe vera acemannan to develop elastic, crosslinker-free, all-polysaccharide hydrogels

Authors: Ngoc Huynh, Lukas Fliri, Juan José Valle-Delgado, Monika Österberg

Journal: International Journal of Biological Macromolecules

Abstract: Plant-based polymers hold promising prospects thanks to their bioactivity, diversity and versatility but they are currently overshadowed by synthetic and animal-derived materials, especially in biomedical applications. In this study, we developed an entirely plant-based hydrogel with improved mechanical performance based on TEMPO-oxidized cellulose nanofibrils (TCNFs) and the polysaccharide fraction (AVPF) extracted from Aloe vera L. (Aloe barbadensis Miller). The hydrogel blends exhibited excellent viscoelastic properties, minimal shrinkage and a significant increase in compressive modulus (ranging from 2.7 to 13.2 kPa versus 0.8 kPa in single component hydrogels), suggesting a synergistic effect. In-depth analysis of interaction and morphology of the hydrogels by QCM-D, AFM and SEM imaging showed that the observed synergy was the result of the complementary action between the two components and a uniform spatial distribution of the two networks. TCNFs built the rigid skeleton for the hydrogels, while AVPF physically adsorbed on TCNFs, forming a flexible matrix, allowing for better load transfer and dissipation in both static and dynamic loading, leading to a remarkable increase in moduli that surpassed the mere sum of the two individual components. In addition, the obtained hydrogels also showed little to no perceptible shrinkage after drying, unlike the single-component hydrogels made from the initial materials. These hydrogels offer a sustainable and ethical alternative to animal-derived materials, with great potential in biomedical fields.

The full article can be accessed here.

Publication on AWSensors technology

Thermomechanical Characterization of High Tg Disulfide-Containing Thermoplastic Polyimides

Authors: Margaret A. Hall, Broderick Lewis, Kenneth R. Shull

Journal: Macromolecules

Abstract: Covalent adaptable networks are frequently studied as alternatives to conventional thermosetting polymers because they can be recycled and reprocessed; however, the inclusion of dynamic covalent bonds within high-temperature (or high-performance) engineering thermoplastics remains largely unexplored. In this work, dynamic disulfide-containing thermoplastic polyimides were synthesized and compared to nondynamic thermoplastic polyimides. The thermomechanical properties of these polymers were examined by utilizing several techniques, including thermogravimetric analysis, differential scanning calorimetry, along with the use of the rheometric quartz crystal microbalance, and traditional dynamic mechanical analysis. The resulting experimental data suggest that the thermal stability of the dynamic compositions was slightly reduced in comparison to the nondynamic analogs, but the dynamic compositions exhibit a similar mechanical response under service conditions. The dynamic compositions also demonstrated significantly easier reprocessability via compression molding than their nondynamic counterparts.

The full article can be accessed here.

Publication on AWSensors technology

Matrix Metalloproteinase-9 Mediates Endothelial Glycocalyx Degradation and Correlates with Severity of Hemorrhagic Fever with Renal Syndrome

Authors: Chloé Jacquet. Rasmus Gustafsson, Ankit Kumar Patel, Magnus Hansson, Gregory Rankin, Fouzia Bano, Julia Wigren Byström, Anders Blomberg, Johan Rasmuson, Simon Satchell, Therese Thunberg, Clas Ahlm, Marta Bally, Anne-Marie Fors Connolly

Journal: medRxiv Preprint

Abstract: Hemorrhagic fever with renal syndrome (HFRS) caused by Puumala virus (PUUV) leads to vascular dysfunction contributing to acute kidney injury and pulmonary complications. The endothelial glycocalyx (eGLX) is crucial for vascular integrity, and its degradation may exacerbate disease severity. In this study, we examined the association between eGLX degradation and renal and pulmonary dysfunction in 44 patients with laboratory-confirmed PUUV infection. We measured plasma levels of eGLX degradation markers—syndecan-1, heparan sulfate, soluble thrombomodulin, and albumin— and found that these correlated with severe acute kidney injury and the need for oxygen therapy. In vitro experiments showed that matrix metalloproteinase-9 (MMP-9) and heparanase can degrade eGLX components, but albumin at physiological concentrations can mitigate this degradation and protect endothelial barrier function. These findings indicate that eGLX degradation contributes to HFRS pathogenesis and suggest that targeting the eGLX could be a therapeutic strategy to improve patient outcomes.

The full article can be accessed here.

Publication on AWSensors technology

The role of humidity in enhancing CO2 capture efficiency in polyethyleneimine thin films

Authors: John R. Hoffman, Avery E. Baumann, Christopher M. Stafford

Journal: Chemical Engineering Journal

Abstract: Amine impregnated sorbents have been extensively studied for direct air capture (DAC) of CO2 in both dry and humid conditions. In a dry environment, CO2 capture follows a carbamate formation mechanism. Amine efficiency can be improved by allowing more amine sites to participate in the reaction. Introducing water vapor helps break up internal hydrogen bonding within the amine-based polymer, which increases both the polymer mobility and accessibility of amine sites. In this work, we evaluate the influence of humidity on the CO2 capture in polyethyleneimine (PEI) thin films using tandem quartz crystal microbalance (QCM) and polarization modulation infrared reflection–absorption spectroscopy (PM-IRRAS). We show that tandem QCM/PM-IRRAS enables more accurate CO2 uptake measurements, as the combined techniques can separate individual mass changes due to CO2 and H2O sorption. CO2 adsorption capacity and amine efficiency were evaluated for a 10 nm and 100 nm film at varied temperatures, humidities, and CO2 concentrations. We find that water sorption greatly enhances CO2 uptake when the capture is limited by diffusional resistance (at higher CO2 concentration and in 100 nm films) but has less influence in conditions where CO2 availability is limiting uptake (at lower CO2 concentration and in 10 nm films). Thus, we argue that humidity does improve capture, but not at all conditions. Our approach enhances the understanding of H2O-assisted sorption of CO2 in PEI across a range of conditions while also presenting a measurement strategy to apply to, and hopefully optimize, component uptake in materials of interest to the CO2 capture community.

The full article can be accessed here.

European Flag

Avances en Bio-funcionalización: Proyecto BioprintedQCM de AWSensors

Advanced Wave Sensors S.L. (AWSensors) participa en el proyecto BioprintedQCM, una iniciativa pionera en el campo de los biosensores. Este proyecto, apoyado por la Agència Valenciana de la Innovació y cofinanciado por el fondo europeo FEDER, se enmarca dentro del programa “Proyectos de Consolidación de la Cadena de Valor Empresarial” (Convocatoria 2023).

El proyecto, que comenzó en octubre de 2023 y se extenderá hasta diciembre de 2025, y cuenta con una subvención de 178.219,62 €, tiene como objetivo principal desarrollar nuevas técnicas de bio-funcionalización superficial para la inmovilización precisa de sondas de biorreconocimiento en microrresonadores acústicos. La técnica BioprintedQCM se aplica en el desarrollo de biosensores basados en dispositivos HFF-QCM ARRAY, propiedad de AWSensors, permitiendo crear biosensores más eficientes y de menor coste.

En 2024, el proyecto BioprintedQCM ha logrado avances significativos en el desarrollo de una nueva técnica bioquímica de funcionalización de superficies para la inmovilización de sondas de bio-reconocimiento en micro-resonadores acústicos. Este proyecto, liderado por AWSensors, se centra en la creación de biosensores avanzados basados en dispositivos HFF-QCM ARRAY, capaces de detectar múltiples sustancias simultáneamente.

Principales Logros en 2024

En 2024, el proyecto BioprintedQCM ha logrado avances significativos en varias áreas clave. Se han diseñado y evaluado dos soluciones de encapsulado para los arrays de sensores, optimizando el proceso de fabricación y reduciendo costos. Además, se ha desarrollado un proceso de fabricación semi-automático y un sistema de control de calidad para los arrays encapsulados. En cuanto a la técnica de funcionalización superficial, se ha seleccionado una bioimpresora avanzada para la funcionalización precisa de los arrays y se ha integrado esta tecnología con los sensores HFF-QCM ARRAY, logrando una funcionalización precisa y repetible de los microsensores. La funcionalidad de los bioreceptores inmovilizados ha sido validada mediante un ensayo colorimétrico, demostrando su efectividad y especificidad, y se ha iniciado la transferencia del protocolo de impresión a los sensores HFF-QCM ARRAY. Por último, en el desarrollo del biosensor multianalito, se han seleccionado los contaminantes emergentes diana, incluyendo genes de resistencia antimicrobiana, y se han desarrollado y validado los protocolos bioquímicos de detección en sensores HFF individuales, demostrando su viabilidad y efectividad.

«Actuación cofinanciada por la Unión Europea a través del Programa Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2021-2027»

Logos GVA IVACE+i FEDER

¡Sigue nuestras actualizaciones para conocer más sobre los avances de este emocionante proyecto!

Publication on AWSensors technology

Operando Tracking of Resistance, Thickness, and Mass of Ti3C2Tx MXene in Water-in-Salt Electrolyte

Authors: Audrey Perju, Danzhen Zhang, Ruocun John Wang, Pierre-Louis Taberna, Yury Gogotsi, Patrice Simon

Journal:  Adv. Energy Mater.

Abstract: MXenes are among the fastest-growing families of 2D materials, promising for high-rate, high-energy energy storage applications due to their high electronic and ionic conductivity, large surface area, and reversible surface redox ability. The Ti3C2Tx MXene shows a capacitive charge storage mechanism in diluted aqueous LiCl electrolyte while achieving abnormal redox-like features in the water-in-salt LiCl electrolyte. Herein, various operando techniques are used to investigate changes in resistance, mass, and electrode thickness of Ti3C2Tx during cycling in salt-in-water and water-in-salt LiCl electrolytes. Significant resistance variations due to interlayer space changes are recorded in the water-in-salt LiCl electrolyte. In both electrolytes, conductivity variations attributed to charge carrier density changes or varied inter-sheet electron hopping barriers are detected in the capacitive areas, where no thickness variations are observed. Overall, combining those operando techniques enhances the understanding of charge storage mechanisms and facilitates the development of MXene-based energy storage devices.

The full article can be accessed here.

Publication on AWSensors technology

Operando Gravimetric and Energy Loss Analysis of Na3V2(PO4)2F3 Composite Films by Electrochemical Quartz Microbalance with Dissipation Monitoring

Authors: Jeronimo Mirand, Pierre-Louis Taberna, Patrice Simon

Journal: ACS Nano

Abstract: The rising demand for energy storage calls for technological advancements to address the growing needs. In this context, sodium-ion (Na-ion) batteries have emerged as a potential complementary technology to lithium-ion batteries (Li-ion). Among other materials, Na3V2(PO4)2F3 (NVPF) is a promising cathode for Na-ion batteries due to its high operating voltage and good energy density. In order to further characterize the (dis)charge behavior of NVPF, the electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) was employed to track both the frequency and dissipation loss changes at the electrode/electrolyte interface. The electrode composite preparation proved to be crucial for extending the potential window to both Na3V2(PO4)2F3/Na2V2(PO4)2F3 and Na2V2(PO4)2F3/Na1V2(PO4)2F3 domains. Composites prepared with rawNVPF powder (1–20 μm particles) and polyvinylidene fluoride (PVDF) binder (raw-NVPF:PVDF) exhibited large dissipation changes during (dis)charging, attributed to the soft viscoelastic nature of the binder and substantial hydrodynamic interaction caused by the large particles. On the other hand, composites prepared by sieved NVPF particles (<1 μm particles) with sodium carboxymethyl cellulose (NaCMC) binder (sieved-NVPF:NaCMC) showed rigid properties, enabling an extended and more accurate gravimetric analysis. This allowed for the determination of a linear charge-to-mass relationship for the full potential window of NVPF, reflecting the potential independent insertion/deinsertion of bare Na ions (23 g·mol–1). Additionally, reversible dissipative changes were observed for the Na3V2(PO4)2F3/Na2V2(PO4)2F3 transition, with no further dissipative changes observed during the Na2V2(PO4)2F3/Na1V2(PO4)2F3 process

The full article can be accessed here.

Publication on AWSensors technology

Unlocking self-discharge: Unveiling the mysteries of electrode-free Zn-MnO2 batteries with advanced in situ techniques in mild acid aqueous electrolytes

Authors: Arvinder Singh, Lamia Ouassi, Keho Allemang, Jean-François Lemineur, Ozlem Sel, Frédéric Kanoufi, Christel Laberty-Robert

Journal: Journal of Power Sources 2025

Abstract: We introduce a novel approach to Zinc-MnO2 battery architecture utilizing a 3D network of carbon nanofibers as both current collector and electrode material, promising enhanced performance and longevity for large-scale energy storage. Employing mild aqueous electrolytes, we address the challenge of managing self-discharge, crucial for short-term energy storage. Advanced coupled characterization techniques, including in-situ EQCM (Electrochemical Quartz Crystal Microbalance) and high-resolution optical microscopy, elucidate self-discharge mechanisms across over multiple length scales. Findings reveal that the self-discharge is mainly at the zinc electrode due to concomitant dissolution of Zinc (corrosion) and HER (Hydrogen Evolution Reaction) phenomena. Interestingly, the corrosion current was estimated irrespective of charging protocol and remains consistent, indicating the independence of zinc corrosion kinetics from the length scale. Finally, the morphology of the zinc layer appears to be critical, suggesting that self-discharge is primarily a chemical process. This innovative design strategy offers the potential for high-performance Zinc-MnO2 batteries with extended cycle life to meet the requirements of large-scale energy storage applications.

The full article can be accessed here.