Tag Archive for: ac-electrogravimetry

Publication on AWSensors technology

Highly Ordered Graphene Polydopamine Composite Allowing Fast Motion of Cations: Toward a High-Performance Microsupercapacitor

Authors: Adnane Bouzina, René Meng, Cyrille Bazin, Hubert Perrot, Ozlem Sel, Catherine Debiemme-Chouvy

JournalAdv. Mater. Interfaces (2023)

 

Abstract

The simple and eco-friendly preparation of microsupercapacitor remains a great challenge. Here are presented the preparation and the characterizations of an all-solid symmetric micro-supercapacitor based on a new composite formed of highly ordered graphene sheets due to the presence of polydopamine between the layers, which present a d-spacing of 0.356 nm. This graphene-polydopamine composite is prepared by electroreduction of graphene oxide (GO) followed by the electrooxidation of dopamine added into the initial solution, i.e., after GO reduction. In Na2SO4 solution, this composite material shows excellent capacitance and stability even at a high scan rate (2 V s−1) and a very low relaxation time (τ0) of 62 ms. This value is in very good agreement with the high transfer kinetic and low transfer resistance values of the ions implied in the charge storage process (Na+·2H2O and Na+) determined by ac-electrogravimetry. Finally, it is shown that the all-solid micro-supercapacitor (interdigitated electrodes obtained using a CO2 laser and Na2SO4/PVA hydrogel) prepared with this new composite delivers a remarkable energy density of 6.36 mWh cm−3 for a power density of 0.22 W cm−3 and exhibits excellent cycling stability (98% of retention after 10 000 cycles at 2 V s−1).

 

You may read the full paper here.

Publication on AWSensors technology

Interface Properties of 2D Graphene–Polydopamine Composite Electrodes in Protic Ionic Liquid-Based Electrolytes Explored by Advanced Electrogravimetry

Authors: Adnane Bouzina, Hubert Perrot, Catherine Debiemme-Chouvy, and Ozlem Sel

JournalACS Appl. Energy Mater. (2022)

 

Abstract

A fundamental understanding of the processes occurring at the electrode/electrolyte interfaces is of paramount importance to enhance the performance of energy storage devices. Addressing this issue requires suitable characterization tools, due to the complex nature of such interfaces. By means of electrochemical quartz crystal microbalance (EQCM) and its advanced mode, the so-called ac-electrogravimetry, herein, we report on the interfacial properties of two-dimensional (2D) graphene–polydopamine (ERGO-PDA) composite electrodes in diverse electrolyte compositions including a protic ionic liquid (PIL), pyrrolidinium hydrogen sulfate [Pyr+][HSO4]. We have performed a comparative study in a [Pyr+][HSO4]–water binary mixture in the absence and presence of Na2SO4 and compared it with the interfacial behavior of ERGO-PDA in a 0.5 M Na2SO4 (pH = 2) pristine electrolyte. Our EQCM and ac-electrogravimetric analyses reveal that the [Pyr+] ions, due to their chaotropic nature, inhibit the approach of kosmotropic Na+ ions and water molecules to the interface, suppressing the contribution of electrodragged water molecules, substantially observed in the case of pristine aqueous electrolyte. Despite the dissimilarity of the charge compensation process occurring in the presence of [Pyr+][HSO4], the ERGO-PDA electrode is able to maintain similar cycling stability (99% for 10,000 cycles at 1000 mV·s–1) and specific capacitance values (325 F·cm–3) compared with the pristine aqueous electrolyte, with the advantage of superior energy density (16.3 versus 8.7 mWh·cm–3) due to a noticeably enlarged potential window in [Pyr+][HSO4]–water binary mixtures.

You may read the full paper here.

Publication on AWSensors technology

Interfacial charge storage mechanisms of composite electrodes based on poly(ortho-phenylenediamine)/carbon nanotubes via advanced electrogravimetry

Authors: El Mahdi Halim, Rezan Demir-Cakan, Hubert Perrot, Mama El Rhazi, Ozlem Sel

Journal: The Journal of Chemical Physics (2022)

 

Abstract

To reach a deeper understanding of the charge storage mechanisms of electrode materials is one of the challenges toward improving their energy storage performance. Herein, we investigate the interfacial ion exchange of a composite electrode made of carbon nanotube/poly( ortho-phenylenediamine) (CNT/P oPD) in a 1M NaCl aqueous electrolyte via advanced electrogravimetric analyses based on electrochemical quartz crystal microbalance (EQCM). Classical EQCM at different scan rates of the potential revealed the complex electrogravimetric behavior likely due to multi-species participation at different temporal scales. Thereafter, in order to better understand the behavior of each species (ions, counter ions, and co-ions) in the charge compensation mechanism, the electrogravimetric impedance spectroscopy analysis (also called ac-electrogravimetry) was pursued. Ac-electrogravimetry revealed the role of each species where Na + cations and Cl − anions as well as protons participate in the charge compensation mechanism of the CNT/P oPD composite with different kinetics and proportions. The water molecules with opposite flux direction with the cations are also detected, suggesting their exclusion during cationic species transfer. Having analyzed ac-electrogravimetry responses in depth, the synergistic interaction between the CNT and P oPD is highlighted, revealing the improved accessibility of species to new sites in the composite.

 

You may read the full paper here.

Scientific publication

Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types

Authors: Freddy Escobar-Teran, Hubert Perrot and Ozlem Sel.
Journal: Materials (2022)

 

Abstract

Electrochemical quartz crystal microbalance (EQCM) and AC-electrogravimetry methods were employed to study ion dynamics in carbon nanotube base electrodes in NaCl aqueous electrolyte. Two types of carbon nanotubes, Double Wall Carbon Nanotube (DWCNT) and Multi Wall Carbon Nanotube (MWCNT), were chosen due to their variable morphology of pores and structure properties. The effect of pore morphology/structure on the capacitive charge storage mechanisms demonstrated that DWCNT base electrodes are the best candidates for energy storage applications in terms of current variation and specific surface area. Furthermore, the mass change obtained via EQCM showed that DWCNT films is 1.5 times greater than MWCNT films in the same potential range. In this way, the permselectivity of DWCNT films showed cation exchange preference at cathode potentials while MWCNT films showed anion exchange preference at anode potentials. The relative concentration obtained from AC-electrogravimetry confirm that DWCNT base electrodes are the best candidates for charge storage capacity electrodes, since they can accommodate higher concentration of charged species than MWCNT base electrodes.

You may read the full paper here.

Publication on AWSensors technology

Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability

Authors: El Mahdi Halim, Rezan Demir-Cakan, Hubert Perrot, Mama El Rhazi, Ozlem Sel

Journal: The Journal of Power Sources (2019)

 

Abstract

An integrated electrogravimetric study based on electrochemical quartz crystal microbalance (EQCM) unravels the interfacial ion transfer phenomena of the poly(ortho-phenylenediamine) (PoPD) thin film electrodes. Through a methodology coupling QCM with electrochemical impedance spectroscopy (ac-electrogravimetry), our work indicates that charge compensation process of PoPD in aqueous electrolytes (in acidified NaCl) occurs with the participation of multiple species, each playing a role at different temporal scales. The PoPD films are tested in a 2 electrode Swagelok cell in which Zn is used as both reference and counter electrodes and exhibit excellent stability over 8000 cycles with a relatively high specific capacitance of about 110 F g−1 at 30 C (0.63 mA cm−2) current density. The high rate capability and the excellent cycling stability of the PoPD electrodes are correlated to the electrolyte composition and the significant role of H+ to the charge compensation process is unravelled, which is made possible with coupled electrogravimetric methods of our study. By determining the interfacial flux dynamics and as well as the relative proportions of species transferred at the electrode/electrolyte interface, our results contribute to the understanding of the charge-discharge process of PoPD polymer, yet underexplored but emerging as a pseudo-capacitive electrode material.

You may read the full paper here.

Dynamic Resolution of Ion Transfer in Electrochemically Reduced Graphene Oxides Revealed by Electrogravimetric Impedance

Authors: Hamza Goubaa, Freddy Escobar-Teran, Ibtissam Ressam, Wanli Gao, Abdelkrim el Kadib, Ivan T. Lucas, Mustapha Raihane, Mohammed Lahcini, Hubert Perrot, Ozlem Sel. Sorbonne Université, UPMC, Univ Paris 06, CNRS, France. Laboratoire Interfaces et Systèmes Électroquimiques; Université Cadi Ayyad, Faculté des Sciences et Techniques, Laboratoire de Chimie Organométallique et Macromoléculaire Matériaux composites, Marrakech, Morocco.

Journal:  The Journal of Physical Chemistry (2017)

To accompany the search for optimal materials in electrochemical supercapacitors, appropriate characterization tools to assess key parameters of newly developed electrodes are required. Here we demonstrate the capabilities of ac-mode electrogravimetry to study in details the capacitive charge storage mechanisms in electrochemically reduced graphene oxide (ERGO) thin films electrodes. The coupling of electrochemical impedance spectroscopy (EIS) with fast quartz crystal microbalance (QCM) complements classical electrochemical quartz crystal microbalance (EQCM) by capturing here the dynamics of the electroadsorption process, identifying charged moieties and detecting solvation effects. We evidenced the co-electroadsorption of two types of cationic species (fully and partially hydrated cations) in the potential range studied and the indirect intervention of free solvent molecules. Further kinetic information on electroadsorption is also obtained which leads to a full deconvolution of the global EQCM response at both gravimetric and temporal level. Through a fine analysis of the interactions of different cations of period one elements, Li+, Na+ and Kwith ERGO, we evidenced the critical role of solvation processes on the kinetics of electroadsorption, and provided an experimental proof to the phenomena that smaller ions are more tightly bound to their water molecules such that an inverse relationship exists between the dehydration energy and the ion size. Such gravimetric and dynamic subleties are unreachable with classical tools and with EQCM method alone which permits us to suggest the ac-mode electrogravimetry as a baseline diagnostic tool to explore charge transfer mechanisms at the nanoscale.

Electrochemical and viscoelastic evolution of dodecyl sulfate-doped polypyrrole films during electrochemical cycling

Authors: Wanli Gao, Ozlem Sel, Hubert Perrot

Journal:  Electrochimica Acta (2017)

The correlation between electrochemical and viscoelastic properties of electrodeposited dodecysulfatedoped polypyrrole (PPy-DS) during electrochemical cycling process was described through combining electrochemical quartz-crystal microbalance (EQCM), ac-electrogravimetric characterizations and electroacoustic measurements. as the PPy-DS electrode evolves during the course of consecutive cycling in aqueous NaCI electrolyte, the film exhibits (i) an obvious ion-selective transition from cations to anions in the charge compensation process; (ii) an inferior electrochemical performance accompanied with increased stiffness (increased storaged moduli, G’); and (iii) depleted capability of ionic exchange through film/electrolyte interface. PPy-DS conducting polymer electrodes (CPEs) are of interest in energy storage and the relationship between electrochemical and viscoelastic properties during electrochemical cycling process is essential for promoting the performance of these devices. In this perspective, ac-electrogravimetry combined with electroacoustic measurements can be suggested as an alternative method to synchronously probe the electrochemical and mechanical evolution and has the potential to offer a generalized route to study aging mechanism of CPEs.

 

Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry

Authors: F. Escobar-Teran, A. Arnau, J.V. García, Y. Jiménez, H. Perrot, O. Sel

Journal: Electrochemistry communications (2016)

The capacity charge storage of carbon nanotube (CNT) based electrodes was investigated by ac-electrogravimetry which couples fast quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). In contact with an aqueous NaCI electrolyte, evidence was found that there are two types of cations (Na+.H2O and H+) electroadsorbed with different kinetics for cathodic potentials and the Cl– ionsfor anodic potentials together with free water molecules. The reconstruction of the total mass response from independent ac-electrogravimetry measurements agrees perfectly well with the global EQCM response. Our findings reveal the unique sensitivity of the ac-electrogravimetry to provide a fair gravimetric and dynamic deconvolution of the global EQCM responses.

You may read the full paper here