Tag Archive for: biosensor

European Flag

SensoBac, un biosensor acústico de microorganismos para agua potable

SensoBac es un proyecto que permitirá el desarrollo de una nueva técnica analítica de biosensores para la detección temprana de biomarcadores ligados a la posible presencia de bacterias en la red de distribución de agua potable y que funcionará como un sistema de alerta y vigilancia constante. De esta forma, se conseguirá una técnica fiable, simple, de bajo coste, altamente sensible y que permitirá una detección directa, in situ, contínua y en tiempo real.

Duración: Septiembre 2022 – Agosto 2024

Los resultados alcanzados han sido:

– Desarrollo de una plataforma biosensora basada en tecnología acústica.

– Desarrollo y optimización de una metodología para la detección de microorganismos en la plataforma.

– Validación de equipos comerciales para el control microbiológico en la red de producción y distribución de agua potable.

El proyecto SensoBac ha desarrollado un biosensor acústico capaz de detectar y monitorizar microorganismos en las etapas de producción y distribución de agua potable. El desarrollo de esta plataforma basada en ondas sonoras facilita su operabilidad en las redes de distribución del agua al requerir menor uso de reactivos y mantenimiento. El trabajo llevado a cabo por parte de AWSensors se ha centrado en el desarrollo la plataforma sensora a partir de su innovadora tecnología patentada (PCT/ES2021/070518, PCT/ES2022/070177).

Este proyecto ha sido cofinanciado por el Instituto Valenciano de Competitividad e Innovación (IVACE+i) y es susceptible de ser cofinanciado por la Unión Europea a través del programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2021-2027. (Exp. INNEST/2022/298).

 

Scientific publication

High-Frequency Quartz Crystal Microbalance and Dual-Signaling Electrochemical Ratiometric Assays of PTP1B Activity Based on COF@Au@Fc Hybrids

Authors: Shuping Liu, Qingqing Zhang, Xiaohua Zhang, Cuicui Du, Shihui Si, and Jinhua Chen

Journal: Analytical Chemistry

Abstract

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent–organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium–tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.

You may read the full paper here.

European Flag

BioprintedQCM, proyecto de Consolidación de la Cadena de Valor Empresarial

Advanced Wave Sensors S.L. (AWSensors), en el marco del programa “Proyectos de Consolidación de la Cadena de Valor Empresarial” (Convocatoria 2023), ha contado con el apoyo de la Agència Valenciana de la Innovació y con la cofinanciación del fondo europeo FEDER para el desarrollo de un proyecto de investigación industrial en el campo de los biosensores. El proyecto dió comienzo en octubre de 2023 y tiene prevista una duración de 27 meses, hasta su finalización en diciembre de 2025. El proyecto cuenta con una subvención de 178.219,62 €.

El objetivo principal de este proyecto es la investigación de procesos industriales necesarios para el desarrollo de nuevas técnicas de bio-funcionalización superficial que permita la inmovilización de sondas de biorreconocimiento, tales como aptámeros, anticuerpos o secuencias de ADN, en la superficie de microrresonadores acústicos de una manera precisa, controlada, rápida, repetitiva, y a un coste reducido.

La técnica BioprintedQCM se aplicará en el desarrollo de nuevos biosensores basados en dispositivos HFF-QCM ARRAY, propiedad de AWSensors.

«Actuación susceptible de ser cofinanciada por la Unión Europea»

European Flag

SensoBac, biosensores para detección de bacterias viables en agua potable

Advanced Wave Sensors S.L. (AWSensors), en el marco del programa “Proyectos Estratégicos en Cooperación“, ha contado con el apoyo de la Agència Valenciana de la Innovació y con la cofinanciación del fondo europeo FEDER para el desarrollo de un proyecto de investigación industrial en el campo de los biosensores. El proyecto lo lidera AWSensors, junto con la Universitat de Politècnica de València y la Empresa Mixta Valenciana de Aguas, S.A., comenzando en mayo de 2022 y finalizando en septiembre de 2024. El proyecto cuenta con un presupuesto total de 297.531,75 € con una subvención de 178.519,05 €.

El objetivo principal de este proyecto es desarrollar una nueva técnica analítica de biosensores para la detección temprana de biomarcadores ligados a presencia de bacterias en la red de distribución de agua potable que funcione como un sistema de alerta y vigilancia constante. La tecnología propuesta, basada en la tecnología sensora QCMD de AWSensors, supone una ventaja respecto a las tecnologías disponibles por su robustez, sensibilidad, detección directa en tiempo real, capacidad de análisis multianualito, bajo coste por ensayo, bajo coste por sensor, modularidad y su facilidad de uso.

Durante el transcurso del proyecto, se trabajará en la selección de un conjunto de biomarcadores que permitan su cuantificación y relación con la presencia y viabilidad de bacterias en aguas, se desarrollaron protocolos analíticos de validación primero a nivel de laboratorio y, posteriormente, sobre la plataforma biosensora desarrollada a tal efecto.

«Actuación susceptible de ser cofinanciada por la Unión Europea»

honey

AWSensors technology to develop a DNA biosensor for detection of honey adulteration

May 15th 2017

AWSensors technology will be used in a new research project funded by Spanish Government (Retos Investigación 2017-2019) to develop a DNA biosensor for detection of honey adulteration. Honey companies are interested in this biosensor because new and cheaper analytical methods are required to meet the quality controls set by European Comission.

One of the priority challenges of the European Union (EU) is “Quality and Security in Food”. Food adulteration is a topic of interest in several fields: health care, legal (since it is a fraud) and economic (since it generates unfair competition). In this context, honey is one of the most commonly adulterated food, which generates a great deal of economical problems in apiarian production and comercialization sector. This situation affects directly to Spain, since is the most important EU country in honey production and comercialization. Nowadays, honey adulteration is made, mainly, by using vegetal siropes, resulting in an adulterated product similar in taste to natural honey, but fraudulent, and including substances that consumer unknowingly ingests. Therefore, the European Comission is promoting the development of new analytical methods which complement or replace the already existing ones.

 

The main drawbacks of the already existing techniques are:

  1. There is no a unique technique which allows to identify, in a reliable way, an adulteration; therefore, in order to be conclusive, several analytical determinations are needed;
  2. They are only available in central laboratories, which directly affects to the companies quality control process, slowing it down and rising its costs;
  3. They requiere high qualified staff;
  4. They requiere long time analysis periods (hours)
  5. They have not enough resolution to detect the target substances sometimes.

 

 

DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast and low cost. The proposed technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the substances used in honey adulteration.

 

In this scenario, techniques based on DNA biosensors are becoming very promising in the field of security and quality food control, since they are easy handling, reliable, fast (analysis periods: minutes) and low cost. In this research project, the use of a novel technology in the field of food control adulteration is proposed. This technology is based on the use of acoustic sensors coated with functionalized nanostructures which allow to greatly increase the Limit of Detection (LOD) of the DNA of the plant substances used in honey adulteration. The use of those mentioned nanostructures generates a mechanic-acoustic amplification effect and, moreover, allow to separate the sensor transduction mechanism from the biochemical recognition process (DNA hybridization). The expected result is an increase of more than one order of magnitude in the sensor response when comparing it with the response of a sensor without the nanostructure coating.

The research proposed in this project deals with new challenges:

  1. The use of a new recognition method based on DNA detection;
  2. The use of nanostructures which provide a mechanic-acoustic amplification and a separation of the transduction mechanism from the biochemical recognition process;
  3. The use of a new technique for sample dispensing based on an in-batch method.

 

To deal with these challenges, a multidisciplinary research team of experts in micro and nano electronics, advanced materials and biotechonology is required to guarantee the succes of the project. AWSensors will collaborate with this team of scientists from the Polytechnic University of Valencia, in Spain, (Bioengineering Research and Innovation Center and University Institute of Food Engineering for Development) and University Pierre et Marie Curie, in France (Laboratoire interfaces et systémes electroquimiques). Other honey companies such as Apisol, Honeygreen, Cooperativa Apícola de España, Granalbe and Primo Mendoza are interested in the results of the project.

AWS probe module for immersion

A new sensor module for immersion

Northwestern University, typically ranked among the top 15 of all U.S. universities in US, has become our customer. We are delighted to begin our expansion into the U.S. market with our relationship with Northwestern.

Our specific collaboration is with Prof. Kenneth Shull, from the Department of Materials Science and Engineering. He is one of the most prestigious researchers on the properties of polymer surfaces and interfaces, with a research emphasis on the adhesion of “soft materials”, including traditional pressure-sensitive adhesives and highly specialized polymeric gels commonly used in biomedical applications.

 Because of this collaboration, we have just launched a new sensor module specially designed for immersion.

AWS sensor module for immersion

Currently, researchers are using hand-made devices but they usually cause several inconvenients:

 

  • Lack of chemical resistance.
  • Weakness.
  • High volume of sample is wasted
  • Sealing is not hermetical.

The new AWS EQCM probe module solves all these issues and offers other advantages

Cover of AWS probe sensor module

  • You can immerse the sensor module even in very strong or hot solutions (up to 150 degrees) because the parts in contact with the liquid are made of PEEK and PTFE.
  • You can visualize the sensor during the experiment because the chamber is made of see-through material.
  • You do not have to worry about sealing. A PTFE cover seals the glass vial and includes holes for the reference and counter electrodes and holes for PTFE tubbing for controlling atmosphere or bubling inside the chamber.
  • You can easily replace and clean all the parts of the probe module.

 

The AWS EQCM Probe module is designed to operate with standard wrapped QCM sensors of 14 mm or 1” diameter with contacts, as well as AWS-HFF sensors.

 

Do you feel this new sensor module could be useful for your research?

 

Visit our Custom Solutions and tell us your needs

We would be pleased to help you