Tag Archive for: capacitor

Publication on AWSensors technology

Comparison of Thin-Film Capacitor Geometries for the Detection of Volatile Organic Compounds Using a ZIF-8 Affinity Layer

Authors: Aleksander Matavž, Margot F. K. Verstreken, Jorid Smets, Max L. Tietze, and Rob Ameloot

JournalACS Sensors (2023)

 

Abstract

Their chemical diversity, uniform pore sizes, and large internal surface areas make metal–organic frameworks (MOFs) highly suitable for volatile organic compound (VOC) adsorption. This work compares two geometries of capacitive VOC sensors that use the MOF material ZIF-8 as an affinity layer. When using a permeable top electrode (thickness < 25 nm), the metal–insulator–metal (MIM) sandwich configuration exhibits superior sensitivity, an improved detection limit, and a smaller footprint than the conventional interdigitated electrode layout. Moreover, the transduction of VOC adsorption in ZIF-8 via MIM capacitors is more sensitive to polar VOCs and provides better selectivity at high loadings than gravimetric and optical transductions.

 

You may read the full paper here.

Scientific publication

Electropolymerization of thiazole derivatives bearing thiophene and selenophene and the potential application in capacitors

Authors: Seongjun Hong, Joon Ho Yoon, Seunghyun Jeong, Yang-Rae Kim and In Tae Kim.
Journal: Journal of Electroanalytical Chemistry (2022)

 

Abstract

Three thiazole derivatives bearing thiophene and selenophene are synthesized and used as monomers for electropolymerization. The electropolymerization process is studied using cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM) techniques. Deep understanding is obtained regarding the pseudocapacitor performance of deposited polymer layers by subjecting the macroelectrode and ultramicroelectrode to CV and galvanostatic charging–discharging experiments in three kinds of electrolytes. Notably, the highest specific capacitance is observed in the derivative bearing selenopheno[3,4-d]thiazole and selenophene in a solution of tetrabutylammonium tetrafluoroborate. Furthermore, the electropolymerization rate is influenced by the kind of chalcogenophene and the CV scan rate. A spectroelectrochemistry experiment reveals the optical and electrochromic behavior of the deposited polymer layers. From these results, the pseudocapacitor performance of the deposited polymer layers is related to anion intercalation/deintercalation processes by faradaic reactions of oligomer chains. The EQCM experiments also reveal these processes during electropolymerization and anion intercalation/deintercalation into the deposited polymer layers. Finally, the approximate molecular weight of the solvated anion and the number of solvent molecules surrounding a solvated anion are analyzed using the EQCM data.

 

You may read the full paper here.