Scientific publication

Robust battery interphases from dilute fluorinated cations

Authors: Chulgi Nathan Hong, Mengwen Yan, Oleg Borodin, Travis P. Pollard, Langyuan Wu, Manuel Reiter, Dario Gomez Vazquez, Katharina Trapp , Ji Mun Yoo, Netanel Shpigel, Jeremy I. Feldblyum and Maria R. Lukatskaya

Journal: Energy Environ. Sci.

Abstract

Controlling solid electrolyte interphase (SEI) in batteries is crucial for their efficient cycling. Herein, we demonstrate an approach to enable robust battery performance that does not rely on high fractions of fluorinated species in electrolytes, thus substantially decreasing the environmental footprint and cost of high-energy batteries. In this approach, we use very low fractions of readily reducible fluorinated cations in electrolyte (∼0.1 wt%) and employ electrostatic attraction to generate a substantial population of these cations at the anode surface. As a result, we can form a robust fluorine-rich SEI that allows for dendrite-free deposition of dense Li and stable cycling of Li-metal full cells with high-voltage cathodes. Our approach represents a general strategy for delivering desired chemical species to battery anodes through electrostatic attraction while using minute amounts of additive.

You can access the full paper here.

Scientific publication

Structure and transition behavior of crosslinked poly(2-(2-methoxyethoxy) ethylmethacrylate-co-(ethyleneglycol) methacrylate) gel film on cellulosic-based flat substrate

Authors: Yangyi Chen, Tong Su, Shihang Zhou, Chendi Xie, Huan Qi , Zaisheng Cai and Liqun Chen

Journal: e-Polymers

Abstract

The structure and transition behavior of crosslinked thermo-responsive poly(2-(2-methoxyethoxy) ethylmethacrylate-co-(ethyleneglycol) methacrylate) (P(MEO2MA-co-EGMA360)) gel film on a flat cellulosic-based substrate were investigated. The regenerated cellulose (RC) film was prepared by spin-coating with trimethylsilyl cellulose (TMSC), followed by etching with hydrochloric acid vapor on a treated silicon wafer, then crosslinked polymer gel film was obtained by spin-coating, drying, and baking with a pre-crosslinked solution containing polymers. Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, and atomic force microscopy results show that a RC film with a thickness of 25 nm is generated in the upper layer of TMSC film on the silicon wafer. The cross-linking induces closer arrangement and hinders the extension of chain segments, leading to less prominent phase transition behaviors of polymer gel films. By quartz crystal microbalance measurement and 3D microscopes, a phase transition hysteresis is discovered, the hydrated and loose structure of crosslinked polymer gel film switches to dehydrated and compact structure in initial heating process, which subsequently recovers during the following cooling process. However, the degrees of rehydration and flexibility of film could not reach the initial value because of the insufficient transition time and steric hindrance caused by crosslinking.

You may access the publication here.

Scientific publication

High-Frequency Quartz Crystal Microbalance and Dual-Signaling Electrochemical Ratiometric Assays of PTP1B Activity Based on COF@Au@Fc Hybrids

Authors: Shuping Liu, Qingqing Zhang, Xiaohua Zhang, Cuicui Du, Shihui Si, and Jinhua Chen

Journal: Analytical Chemistry

Abstract

The abnormal expression of protein tyrosine phosphatase 1B (PTP1B) is highly related to several serious human diseases. Therefore, an accurate PTP1B activity assay is beneficial to the diagnosis and treatment of these diseases. In this study, a dual-mode biosensing platform that enabled the sensitive and accurate assay of PTP1B activity was constructed based on the high-frequency (100 MHz) quartz crystal microbalance (QCM) and dual-signaling electrochemical (EC) ratiometric strategy. Covalent–organic framework@gold nanoparticles@ferrocene@single-strand DNA (COF@Au@Fc-S0) was introduced onto the QCM Au chip via the chelation between Zr4+ and phosphate groups (phosphate group of the phosphopeptide (P-peptide) on the QCM Au chip and the phosphate group of thiol-labeled single-stranded DNA (S0) on COF@Au@Fc-S0) and used as a signal reporter. When PTP1B was present, the dephosphorylation of the P-peptide led to the release of COF@Au@Fc-S0 from the QCM Au chip, resulting in an increase in the frequency of the QCM. Meanwhile, the released COF@Au@Fc-S0 hybridized with thiol/methylene blue (MB)-labeled hairpin DNA (S1-MB) on the Au NPs-modified indium–tin oxide (ITO) electrode. This caused MB to be far away from the electrode surface and Fc to be close to the electrode, leading to a decrease in the oxidation peak current of MB and an increase in the oxidation peak current of Fc. Thus, PTP1B-induced dephosphorylation of the P-peptide was monitored in real time by QCM, and PTP1B activity was detected sensitively and reliably using this innovative QCM-EC dual-mode sensing platform with an ultralow detection limit. This platform is anticipated to serve as a robust tool for the analysis of protein phosphatase activity and the discovery of drugs targeting protein phosphatase.

You may read the full paper here.

Scientific publication

Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform

Authors: Shuping Liu, Qingqing Zhang, Xiaohua Zhang, Cuicui Du, Jinhua Chen, Shihui Si

Journal: Talanta

Abstract

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5′-phosphate-DNAs (P-DNA) through Au–S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01–100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.

You may read the full paper here.

Publication on AWSensors technology

Acoustic detection of a mutation-specific Ligase Chain Reaction based on liposome amplification

Authors: Nikoletta Naoumi, Monica Araya-Farias, Maria Megariti, Lucile Alexandre, George Papadakis, Stephanie Descroix, and Electra Gizeli

Journal: Analyst

Abstract

Single nucleotide variants (SNVs) play a crucial role in understanding genetic diseases, cancer development, and personalized medicine. However, existing ligase-based amplification and detection techniques, such as Rolling Circle Amplification and Ligase Detection Reaction, suffer from low efficiency and difficulties in product detection. To address these limitations, we propose a novel approach that combines Ligase Chain Reaction (LCR) with acoustic detection using highly dissipative liposomes. In our study, we are using LCR combined with biotin- and cholesterol-tagged primers to produce amplicons also modified at each end with a biotin and cholesterol molecule. We then apply the LCR mix without any purification directly on a neutravidin modified QCM device Au-surface, where the produced amplicons can bind specifically through the biotin end. To improve sensitivity, we finally introduce liposomes as signal enhancers. For demonstration, we used the detection of the BRAF V600E point mutation versus the wild-type allele, achieving an impressive detection limit of 220 aM of the mutant target in the presence of the same amount of the wild type. Finally, we combined the assay with a microfluidic fluidized bed DNA extraction technology, offering the potential for semi-automated detection of SNVs in patients’ crude samples. Overall, our LCR/acoustic method outperforms other LCR-based approaches and surface ligation biosensing techniques in terms of detection efficiency and time. It effectively overcomes challenges related to DNA detection, making it applicable in diverse fields, including genetic disease and pathogen detection.

You may read the full paper here.

Publication on AWSensors technology

Quartz crystal microbalance in soft and biological interfaces

Authors: Ilya Reviakine

Journal: Biointephases (2024)

 

Abstract


Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.

You may read the full paper here.

QCMD Data Analysis with PyQTM

AWsensors Technology Note, video, and executable QCMD Data Analysis with PyQTM.

European Flag

Financiación europea para la adecuación de nuestras instalaciones

Advanced Wave Sensors S.L. (AWSensors) ha obtenido una operación de préstamo cofinanciada por la Unión Europea a través del Programa Operativo del Fondo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020, todo ello de conformidad con lo previsto en el anexo XII del Reglamento (UE) 1303/2013 del Parlamento Europeo y del Consejo de 17 de diciembre de 2013. La financiación ha sido gestionada a través del Institut Valencià de Finances en el ámbito del instrumento financiero «Préstamos bonificados IVF PYME REACT-EU FEDER» del Programa operativo FEDER de la Comunitat Valenciana 2014-2020.

«Una manera de hacer Europa»