Tag Archive for: biotechnology

QCMD webinar

QCM-D Webinar

May 24th 2021: AWSensors is pleased to invite you to participate in a QCM-D Scientific Webinar its Distributor Technex, in the BENELUX area, and AWSensors are orginizing. The scientific talk is entitled “Studying Soft Interfaces with Shear Waves: Principles and Applications of the Quartz Crystal Microbalance (QCM-D)” and  will be given by Prof. Diethelm Johannsmann.

 

QCMD Webinar

QCM-D Webinar details

The webinar will take place on Thursday, June 10th, 2021 from 15:00 to 16:30 hrs and it will be free of charge.

To join us, please register on this link: http://eepurl.com/gDLYUD and we will send you the Webinar details.

Speaker’s Short Biography

Diethelm Johannsmann is Professor of Physical Chemistry and the director of the Physical Chemistry Institute at Clausthal University of Technology, Germany. He has made fundamental contributions to the subject of QCM(D), reflected in more than 150 articles, several book chapters, and books. His model is widely used in the analysis of QCM-D data, and he developed free software for QCM-D data analysis and modelling.  You can find more information about his work on his website, https://www.pc.tu-clausthal.de/en/research/johannsmann-group/prof-dr-diethelm-johannsmann/.

 

QCMD Immunosensor

New QCMD Immunosensor Application Note

May 20th 2021: AWSensors is pleased to invite you to take a look to its new Immunosensor Application Note entitled “QCMD immunosensor for small molecule analytes“.

Summary of the Note

A QCMD-based immunoassay for label-free analysis of small molecule concentration in industrial samples was developed using an AWS QCMD system with surface-modified 5 MHz fundamental frequency QCMD sensors. Accuracy and precision of the immunoassay is evaluated with respect to the industry-standard HPLC reference.

QCMD Immunosensor

Introduction

Accurate, rapid, and cost-effective quantification of small molecule analytes is a pressing problem in various industrial (food, agriculture, environmental protection) and health-related fields. Existing approaches include enzyme-linked immunosorbent assays (ELISAs) and various types of chromatography (e.g., High Performance Liquid Chromatography, HPLC). These approaches require trained personal and centralized laboratories, and their deployment in the field is difficult or impossible.

Quartz Crystal Microbalance with Dissipation, or QCMD, is emerging as a promising technology for the development of fast, portable, automated, and cost-effective immunosensors. Here, we demonstrate a competitive small molecule immunoassay based on the AWSensors QCMD technology.


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application Notes.

Other references

QCMD in Lipid Research

QCMD in Lipid Research Tech Note

October 15th 2020: AWSensors is pleased to invite you to take a look to its Technology Note entitled “QCMD in Lipid Research”.

Summary of the Note

QCMD is a label-free surface-analytical technique based on a quartz resonator excited to oscillate at its resonance frequency on one or more overtones. Resonators can have various coatings: gold (Au), silica (SiO2), titania (TiO2), etc. It works in aqueous media or organic solvents and is therefore widely used for studying solid/liquid interfaces. At each overtone, QCMD measures changes in the resonance frequency and energy dissipation due to the processes occurring at the resonator surface. Examples of such processes include formation of a film or changes in the geometrical or physical properties of the film.

The key feature that makes QCMD useful in lipid research is its ability to distinguish between different geometries and topologies of lipidic assemblies at interfaces, for example, homogenous solid-supported bilayers or monolayers vs. adsorbed liposomes or other structures (such as cubosomes) without relying on fluorescent or deuterated labels but by relying on the combination of the frequency and dissipation.

QCMD in Lipid Research

Introduction

Lipid-related QCMD work can be grouped into several topics, with a total of more than a thousand publications:
• Studies focusing on the interactions between lipids and surfaces.
• Studies focusing on the properties of the lipids, such as their phase behavior, adsorbed liposome deformation, etc.
• Studies examining interactions between lipids and membrane-binding proteins, peptides or viruses. Particularly interesting is that QCMD offers a way to study clustering of membrane-bound proteins.
• Studies focusing on the interactions of lipids with polymers or with nanoparticles.

 

Continue reading by downloading the full Technology Note (below) …


Download the Full Technology Note

You can download the full Note in pdf format through this link. A list of our Technology Notes can be found on our Technology Web Page.

Tracking Recovery

Tracking Recovery Technology Note

September 15th 2020: AWSensors is pleased to invite you to take a look to its new Technology Note entitled “Tracking Recovery Technology Note”.

Summary of the Note

Use of the AWSensors X1 Instrument Tracking Recover feature to monitor overtones frequency and dissipation shifts of air-to-liquid medium exchanges onto 5 MHz QCM sensors.

Tracking Recovery

Introduction

The Tracking Recovery feature included in AWSensors X1 platform allows the user to monitor large and fast frequency shifts in QCM (Quartz Crystal Microbalance) admittance spectrum. These sudden modifications in the sensor response are common is some applications where dramatical changes in the viscoelastic properties of the sensor surrounding medium take place.

This technical note illustrates the utility of tracking recovery feature to characterize an air-to-liquid medium exchange. According to Kanazawa and Gordon theory predictions [1], a complex frequency shift is expected in the sensor electromechanical response when the semi-infinite medium placed over the QCM’s top electrode is replaced by other semi-infinite medium. This shift will depend on the viscosity and density properties of the final medium. Following, Kanazawa-Gordon equation is presented for both the frequency (Eq. 1) and the half-bandwidth (Eq. 2) shifts.

Continue reading by downloading the full Technology Note (below) …


Download the Full Technology Note

You can download the full Note in pdf format through this link. A list of our Technology Notes can be found on our Technology Web Page.

Carbaryl Biosensor based on antibody detection

Biosensor Application Note

July 3rd 2020: AWSensors is pleased to invite you to take a look to the Biosensor Application Note entitled “Acoustic Biosensor“.

Summary of the Note

An immunosensor application for determination of carbaryl pesticide was developed by using AWS A20 research platform and AWS F20 Fluidic System. Carbaryl was chosen as the model analyte. Two kinds of acoustic sensors were employed: AWS HFF-QCM sensors (50 MHz and 100 MHz) and Love-SAW sensors with appropriate cells. The AWS A20 platform allowed monitoring phase-shift changes at constant frequency as a function of the sensor surface mass changes.

Biosensor

Introduction

Sensor functionalization: Carbaryl hapten conjugate was covalently immobilized by means of Self Assembled Monolayer (SAM).

Immunoassay format: The chosen competitive immunoassay was a binding-inhibition test based on conjugate-coated format. Carbaryl analyte competes against the immobilized hapten-conjugate for Monoclonal Antibodies.

Carbaryl detection: Samples were injected onto the sensors’ surfaces. AWS software allowed controlling sample injection and fluidics. Furthermore, the employed platform allowed performing the measurements at a constant temperature of 25°C ± 0.05°C.

Since analyte inhibits antibody binding to its respective immobilized conjugates, increasing concentrations of analyte are detected by a change in the increment of the phase-shift of the sensor. The following figures present a representative assay cycle selected from a continuous monitoring in a carbaryl determination, for 100 MHz HFF QCM and 120MHz Love Wave Sensors.

Continue reading by downloading the full Application Note (below) …


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

QCMD

QCMD New Technology Note

SLB

Lipid Bilayers New Application Note

May 15h 2020: AWSensors is pleased to announce the release of its new Application Note on Supported Lipid Bilayers (SLB) entitled “Supported Lipid Bilayer formation followed at low- and high-fundamental frequencies“.

Summary of the Note

The process of supported lipid bilayer (SLB) formation from adsorbed liposomes is a robust biophysical system that is used in laboratories all over the world. Here, it is used to test AWSensors Quartz Crystal Microbalance with Dissipation measurement (QCMD) equipment and high fundamental frequency QCMD sensors. It is shown that the AWSensors QCMD system correctly and quantitatiely reports the frequency and dissipation changes associated with the SLB formation on high- and low-fundamental frequency SiO2-coated sensors. Some differences between the two types of sensors are highlighted. SLB

Introduction

Quartz crystal microbalance with dissipation measurement, or QCMD, has become a popular technique for research in such disparate fields as material science, biophysics, electrochemistry, and immunosensing. [1] One of the reasons for the wide range of applicability and popularity of QCMD is its ability to provide information about molecular organization (topology and geometry) at solid/liquid interfaces. Specifically, it was shown how the combination of frequency and dissipation could distinguish between different surface-immobilized lipidic assemblies: adsorbed liposomes and supported lipid bilayers (SLBs; Figure 1).[2] This allowed the process of SLB formation from liposomes on SiO2-coated QCMD sensors to be followed in situ.[2] Subsequent studies further showed how the combination of frequency and dissipation measurements on various overtones could be used to study adsorbed liposome deformation [3,4] and detect mutations through the analysis of DNA conformation and length. [5, 6]

Continue reading downloading the full Application Note (below) …


Download Full Application Note

You can download the full Application Note in pdf file from this link or download it from our Applications Web Page where you can find this and the rest of our Application and Technology Notes.

Liqbiopsens project

AWSENSORS HOSTS THE 24M MEETING OF LIQBIOPSENS EUROPEAN PROJECT

February 1st 2018

AWSensors host the 24-Month Meeting of LIQBIOPSENS EU project

The meeting of all the project partners was held in Valencia, Spain, at the headquarters of AWSensors and Sistemas Genómicos, where significant advances were presented between the project partners and important decisions were taken to successfully continue pursuing the project goals. Another whole year is still required to complete the project.

The consortium for the development of this project is composed of the following institutions: Servicio Andaluz de Salud (Spain), Université Catholique de Louvin (Belgium),  Foundation for Research and Technology Hellas (Greec), DestiNA Genomics (UK, Spain), Sistemas Genómicos (Spain) and AWSensors (Spain). AWSesensor.

If you wish to know more about the LIQBIOPSENS project, visit the project website at http://liqbiopsens.com.

 


Biotechnology business

AWSENSORS RAISED 1M€ INVESTMENT

July 27th 2017

Swedish and Spanish companies invested in AWSensors seeing a growth opportunity.

AWSensors raised 1M€ investment round to strengthen its position in scientific market and enter the healthcare tech market, one of the most competitive markets. The company though has convinced Swedish and Spanish investors that the potential payoff is worth the risk.

Firms entering into the investment round were BAble Capital, a venture capital firm that aims to invest in technology-based companies from Spanish universities and research centers, and Tech Transfer UPV, a venture capital firm created specifically to transfer technology developed at the Spanish university, Polytechnic University of Valencia. But also a consortium of Swedish companies invested in AWSensors seeing a growth opportunity. Other Spanish companies like PolymerChar, Keodes or Citrosol are also among the shareholders.

Prof. Arnau, founder of AWSensors

AWSensors, led by Prof. Antonio Arnau, expects to speed up innovation processes to launch new scientific equipments to meet demand from scientists and industry R&D but also to develop cutting-edge healthcare technology to be applied in personalized medicine.

The aim of these new developments is to get a blood test meant to catch cancer when it’s most treatable, before patients show symptoms, by detecting fragments of DNA shed by tumors.  A new liquid biopsy system will allow for detection of this circulating DNA and its mutations and will be an essential equipment to help doctors diagnose, monitor and treat cancer patients in a personalized way.

To hit that goal, AWSensors got another 1M€ from European Comission through two H2020 European projects:

  • LiqBiopSens project, that is coordinated by AWSensors and developed together with companies and institutions from Spain, Belgium, UK and Greece.
  • Catch-u-DNA project, which is carried out with partners from Germany, France, Israel, Greece and Spain.

These projects as a whole were funded with 5.7M€ by European Comission.


AWSENSORS CONSIGUE UNA INVERSIÓN DE 1 MILLÓN DE EUROS

Nuevos inversores de Suecia y España entran en el accionariado de la compañía

AWSensors ha conseguido despertar el interés de inversores nacionales e internacionales y realizar una ronda de 1 millón de euros. En la operación de inversión han participado BeAble Capital, sociedad gestora que tiene como objetivo invertir en empresas de base tecnológica con origen en universidades y centros de investigación españoles, y Tech Transfer UPV, fondo creado específicamente para trasladar al mercado tecnología desarrollada en la Universidad Politécnica de Valencia. Pero también un consorcio de empresas tecnológicas suecas ha apostado fuerte por entrar como inversor en AWSensors. Además, empresas valencianas como PolymerChar, Keodes o Citrosol están también entre los accionistas.

Esta inversión permitirá a AWSensors consolidarse en el mercado científico internacional donde comercializa una nueva tecnología patentada de sensores para análisis de interacciones moleculares en tiempo real que utilizan investigadores de Europa, Estados Unidos y Asia en los campos de ciencias de la vida y nuevos materiales.

La compañía, liderada por el Prof. Antonio Arnau, espera invertir en nueva infraestructura de fabricación y captar nuevo talento para su plantilla. El objetivo es acelerar el proceso de innovación para sacar al mercado nuevos equipos con mayor productividad y automatización e iniciar nuevos desarrollos para el mercado de salud, ya que la tecnología de AWSensors podrá ser aplicada en medicina personalizada.

Uno de los desarrollos previstos para el mercado sanitario es un equipo para la detección precoz de cáncer colorrectal y su monitorización sin necesidad de entrar al quirófano para realizar una biopsia del tumor. Servirá con un análisis de sangre cuyos resultados se podrían obtener en una hora. La detección en este caso se basa en el ADN que libera el tumor en el organismo. El nuevo sistema permitirá detectar ese ADN circulante y las mutaciones que sufre asociadas al cáncer. Este análisis, denominado biopsia líquida, permitirá un control sencillo del paciente y facilitará por tanto la adaptación del tratamiento de forma personalizada.

Liqbiopsens project

Este nuevo equipo se está desarrollando junto a otras empresas e instituciones de España, Bélgica, Reino Unido y Grecia dentro del proyecto LiqBiopSens financiado por la Comisión Europea dentro del programa H2020. Un proyecto que ha inyectado medio millón de euros a AWSensors.

Paralelamente a este desarrollo, AWSensors participa en otro proyecto europeo, Catch-u-DNA que investiga una nueva técnica para mejorar la sensibilidad de la tecnología en la detección del ADN circulante. Este proyecto, que se realiza con socios de Alemania, Francia, Israel, Grecia y España, ha supuesto el ingreso de medio millón de euros más en la compañía.

En total, la Comisión Europea ha dotado con 5’7 millones de euros a estos dos proyectos de investigación cuyos resultados impulsarán el crecimiento de AWSensor

Bio Convention San Francisco

Meet us at Bio Convention in San Francisco, US

May 13th 2016

AWSensors will join the Bio Convention next week in San Francisco, US. You may meet us at Spanish Pavilion in booth 605 or in the one-on-one partnering in the Bio Business Forum.

Prof. Antonio Arnau will attend the convention to explain how AWS sensing technology works and its applications in health or agri-food research. Furthermore he will introduce the european project LiqBiopSens and how our sensing technology will be used to developed a liquid biopsy platform for early detection of colorectal cancer.

The Bio International Convention (BIO) attracts over 15,000 biotechnology leaders. We will spend one week of intensive networking to discover new opportunities and promising partnerships with some biotech, pharma and industry leaders and several academic institutions that are attending the most important event in the biotech industry worldwide.. This event covers a wide spectrum of life science and application areas including nanotechnology, drug discovery, genomics, cell therapy or biofuels.

70% out of R+D in bio field is conducted in US where there are more than 2500 companies in this sector.

We are proud to attend the event along with other Spanish biotech companies, a group of about 70 companies together in the Spanish pavilion as you can look up at the SpainBio catalogue.

If you would like to meet with Prof. Arnau in San Francisco from june 6 to 9, do not hesitate to contact us!